
Backpropagation Computations in Matrix Form

Mostafa Sadeghi

Electrical Engineering Department
Sharif University of Technology

Tehran, Iran.

February 2018



Contents

L-layer neural network

Sanity checks for derivatives

A useful trick for gradient computation

Derivatives for output layer

Derivative for intermediate layers

Final expressions



L-layer neural network 

Layer ℓ − 1 Layer ℓ 

𝒂ℓ−1 

𝒂ℓ 
𝑾ℓ 

𝑾ℓ+1 
𝑾ℓ−1 

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 1 / 8



L-layer neural network

An L-layer artificial neural network with input-output {(xi,yi)}Ni=1can be
described by the following equations (` = 1, . . . , L):{

z` = W`a`−1 + b`

a` = σ`(z`)

a` = input to the `th layer

a0 = x (input) and aL = estimation of y (output)

W` = weighting matrix connecting layer `− 1 to layer `

b` = bias vector for layer `

σ`(.) = component-wise nonlinear activation function of layer `

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 2 / 8



Overall training cost function

The overall training cost function can be written as:

CL =
1

N

N∑
i=1

‖aiL − yi‖22

where, aiL is the network output due to input xi. For simplicity, we only
consider the following single cost, for a generic input-output (x,y), to
derive the gradients with respect to network’s parameters. The obtained
expressions can easily be extended to mini-batches of data.

cL = ‖aL − y‖22
∗Note. Henceforth, we do not make any difference between derivative and

gradient.

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 3 / 8



Sanity checks for derivative

Dimension check

The derivative of y = f(x) with respect to x is of the same dimension as x.

To see if a derivative is correct, always check dimension compatibility for
matrix or vector multiplications.

Example. A ∈ Rm×n and x ∈ Rn:

∇x‖Ax‖22 =


2Ax Different dimension than x

2AATx Incompatible dimension

2ATAx Correct

Numerical check

For complex derivative expressions, a useful sanity check is to compare it
with numerical derivative:

∂f

∂xi
' f(xi + h)− f(xi − h)

2h
, ∀i

for a small h > 0. Here, xi denotes the ith entry of x.

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 4 / 8



A useful trick for gradient computation

Consider a general expression like this:

f(W,X,V) = ‖WXV −U‖2F

To compute the gradient with respect to each variable, note that the transposed
of the other variables surrounding it are multiplied from the same side as they are.
That is: 

∇Wf = −2(WXV −U)(XV)T

∇Xf = −2WT (WXV −U)VT

∇Vf = −2(WX)T (WXV −U)

Example: f(x,W) = ‖y −Wx‖22{
∇xf = −2WT (y −Wx)

∇Wf = −2(y −Wx)xT

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 5 / 8



Derivatives for output layer

Backprop begins from the output layer and computes derivatives in a
backward manner (a forward pass is firstly performed to update parameter
values): 

∂cL
∂aL

= 2(aL − y)
∂cL
∂zL

= ∂cL
∂aL
· ∂aL
∂zL

= 2(aL − y)� σ′L(zL)
∂cL
∂WL

= ∂cL
∂zL
· ∂zL
∂WL

= ∂cL
∂zL
· aTL−1

∂cL
∂bL

= ∂cL
∂zL
· ∂zL∂bL

= ∂cL
∂zL

To compute the derivatives of the previous layers recursively, let’s define

δ` ,
∂c`
∂z`

This is called the sensitivity vector of layer `.

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 6 / 8



Derivatives for intermediate layers

Recall: {
z` = W`a`−1 + b`

a` = σ`(z`)

Then, for ` = L− 1, . . . , 1:
∂cL
∂a`

= ∂cL
∂z`+1

· ∂z`+1

∂a`
= WT

`+1δ`+1

∂cL
∂z`

= ∂cL
∂a`
· ∂a`
∂z`

= (WT
`+1δ`+1)� σ′`(z`)= δ`

∂cL
∂W`

= ∂cL
∂z`
· ∂z`
∂W`

= δ`a
T
`−1

∂cL
∂b`

= ∂cL
∂z`
· ∂z`∂b`

= δ`

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 7 / 8



Final expressions

(Forward pass) For ` = 1, . . . , L, compute{
z` = W`a`−1 + b`

a` = σ`(z`)

(Backward pass) Set δL = 2(aL − y)� σ′L(zL). For ` = L− 1, . . . , 1
compute:

δ` = (WT
`+1δ`+1)� σ′`(z`)

∂cL
∂W`

= δ`a
T
`−1

∂cL
∂b`

= δ`

Update parameters using gradient descent:{
W` ←W` − α ∂cL

∂W`

b` ← b` − α∂cL
∂b`

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 8 / 8


