

Backpropagation Computations in Matrix Form

Mostafa Sadeghi

Electrical Engineering Department
Sharif University of Technology
Tehran, Iran.

February 2018

Contents

- L-layer neural network
- Sanity checks for derivatives
- A useful trick for gradient computation
- Derivatives for output layer
- Derivative for intermediate layers
- Final expressions

L-layer neural network

L-layer neural network

An L-layer artificial neural network with input-output $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{N}$ can be described by the following equations $(\ell=1, \ldots, L)$:

$$
\left\{\begin{array}{l}
\mathbf{z}_{\ell}=\mathbf{W}_{\ell} \mathbf{a}_{\ell-1}+\mathbf{b}_{\ell} \\
\mathbf{a}_{\ell}=\sigma_{\ell}\left(\mathbf{z}_{\ell}\right)
\end{array}\right.
$$

- $\mathbf{a}_{\ell}=$ input to the ℓ th layer
- $\mathbf{a}_{0}=\mathbf{x}$ (input) and $\mathbf{a}_{L}=$ estimation of \mathbf{y} (output)
- $\mathbf{W}_{\ell}=$ weighting matrix connecting layer $\ell-1$ to layer ℓ
- $\mathbf{b}_{\ell}=$ bias vector for layer ℓ
- $\sigma_{\ell}()=$. component-wise nonlinear activation function of layer ℓ

Overall training cost function

The overall training cost function can be written as:

$$
C_{L}=\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{a}_{L}^{i}-\mathbf{y}_{i}\right\|_{2}^{2}
$$

where, \mathbf{a}_{L}^{i} is the network output due to input \mathbf{x}_{i}. For simplicity, we only consider the following single cost, for a generic input-output (\mathbf{x}, \mathbf{y}), to derive the gradients with respect to network's parameters. The obtained expressions can easily be extended to mini-batches of data.

$$
c_{L}=\left\|\mathbf{a}_{L}-\mathbf{y}\right\|_{2}^{2}
$$

*Note. Henceforth, we do not make any difference between derivative and gradient.

Sanity checks for derivative

Dimension check

- The derivative of $y=f(\mathbf{x})$ with respect to \mathbf{x} is of the same dimension as \mathbf{x}.
- To see if a derivative is correct, always check dimension compatibility for matrix or vector multiplications.
Example. $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$:

$$
\nabla_{\mathbf{x}}\|\mathbf{A} \mathbf{x}\|_{2}^{2}= \begin{cases}2 \mathbf{A} \mathbf{x} & \text { Different dimension than } \mathrm{x} \\ 2 \mathbf{A} \mathbf{A}^{T} \mathbf{x} & \text { Incompatible dimension } \\ 2 \mathbf{A}^{T} \mathbf{A x} & \text { Correct }\end{cases}
$$

Numerical check

- For complex derivative expressions, a useful sanity check is to compare it with numerical derivative:

$$
\frac{\partial f}{\partial x_{i}} \simeq \frac{f\left(x_{i}+h\right)-f\left(x_{i}-h\right)}{2 h}, \quad \forall i
$$

for a small $h>0$. Here, x_{i} denotes the i th entry of \mathbf{x}.

A useful trick for gradient computation

Consider a general expression like this:

$$
f(\mathbf{W}, \mathbf{X}, \mathbf{V})=\|\mathbf{W} \mathbf{X} \mathbf{V}-\mathbf{U}\|_{F}^{2}
$$

To compute the gradient with respect to each variable, note that the transposed of the other variables surrounding it are multiplied from the same side as they are. That is:

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{W}} f=-2(\mathbf{W X V}-\mathbf{U})(\mathbf{X V})^{T} \\
\nabla_{\mathbf{X}} f=-2 \mathbf{W}^{T}(\mathbf{W} \mathbf{X V}-\mathbf{U}) \mathbf{V}^{T} \\
\nabla_{\mathbf{V}} f=-2(\mathbf{W X})^{T}(\mathbf{W X V}-\mathbf{U})
\end{array}\right.
$$

Example: $f(\mathbf{x}, \mathbf{W})=\|\mathbf{y}-\mathbf{W} \mathbf{x}\|_{2}^{2}$

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{x}} f=-2 \mathbf{W}^{T}(\mathbf{y}-\mathbf{W} \mathbf{x}) \\
\nabla_{\mathbf{W}} f=-2(\mathbf{y}-\mathbf{W} \mathbf{x}) \mathbf{x}^{T}
\end{array}\right.
$$

Derivatives for output layer

Backprop begins from the output layer and computes derivatives in a backward manner (a forward pass is firstly performed to update parameter values):

$$
\left\{\begin{array}{l}
\frac{\partial c_{L}}{\partial \mathbf{a}_{L}}=2\left(\mathbf{a}_{L}-\mathbf{y}\right) \\
\frac{\partial c_{L}}{\partial \mathbf{z}_{L}}=\frac{\partial c_{L}}{\partial \mathbf{a}_{L}} \cdot \frac{\partial \mathbf{a}_{L}}{\partial \mathbf{z}_{L}}=2\left(\mathbf{a}_{L}-\mathbf{y}\right) \odot \sigma_{L}^{\prime}\left(\mathbf{z}_{L}\right) \\
\frac{\partial c_{L}}{\partial \mathbf{W}_{L}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{L}} \cdot \frac{\partial \mathbf{z}_{L}}{\partial \mathbf{W}_{L}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{L}} \cdot \mathbf{a}_{L-1}^{T} \\
\frac{\partial c_{L}}{\partial \mathbf{b}_{L}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{L}} \cdot \frac{\partial \mathbf{z}_{L}}{\partial \mathbf{b}_{L}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{L}}
\end{array}\right.
$$

To compute the derivatives of the previous layers recursively, let's define $\boldsymbol{\delta}_{\ell} \triangleq \frac{\partial c_{\ell}}{\partial \mathbf{z}_{\ell}}$ This is called the sensitivity vector of layer ℓ.

Derivatives for intermediate layers

Recall:

$$
\left\{\begin{array}{l}
\mathbf{z}_{\ell}=\mathbf{W}_{\ell} \mathbf{a}_{\ell-1}+\mathbf{b}_{\ell} \\
\mathbf{a}_{\ell}=\sigma_{\ell}\left(\mathbf{z}_{\ell}\right)
\end{array}\right.
$$

Then, for $\ell=L-1, \ldots, 1$:

$$
\left\{\begin{array}{l}
\frac{\partial c_{L}}{\partial \mathbf{a}_{\ell}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{\ell+1}} \cdot \frac{\partial \mathbf{z}_{\ell+1}}{\partial \mathbf{a}_{\ell}}=\mathbf{W}_{\ell+1}^{T} \boldsymbol{\delta}_{\ell+1} \\
\frac{\partial c_{L}}{\partial \mathbf{z}_{\ell}}=\frac{\partial c_{L}}{\partial \mathbf{a}_{\ell}} \cdot \frac{\partial \mathbf{a}_{\ell}}{\partial \mathbf{z}_{\ell}}=\left(\mathbf{W}_{\ell+1}^{T} \boldsymbol{\delta}_{\ell+1}\right) \odot \sigma_{\ell}^{\prime}\left(\mathbf{z}_{\ell}\right)=\boldsymbol{\delta}_{\ell} \\
\frac{\partial c_{L}}{\partial \mathbf{W}_{\ell}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{\ell}} \cdot \frac{\partial \mathbf{z}_{\ell}}{\partial \mathbf{w}_{\ell}}=\boldsymbol{\delta}_{\ell} \mathbf{a}_{\ell-1}^{T} \\
\frac{\partial c_{L}}{\partial b_{\ell}}=\frac{\partial c_{L}}{\partial \mathbf{z}_{\ell}} \cdot \frac{\partial \mathbf{z}_{\ell}}{\partial \mathbf{b}_{\ell}}=\boldsymbol{\delta}_{\ell}
\end{array}\right.
$$

Final expressions

- (Forward pass) For $\ell=1, \ldots, L$, compute

$$
\left\{\begin{array}{l}
\mathbf{z}_{\ell}=\mathbf{W}_{\ell} \mathbf{a}_{\ell-1}+\mathbf{b}_{\ell} \\
\mathbf{a}_{\ell}=\sigma_{\ell}\left(\mathbf{z}_{\ell}\right)
\end{array}\right.
$$

- (Backward pass) Set $\boldsymbol{\delta}_{L}=2\left(\mathbf{a}_{L}-\mathbf{y}\right) \odot \sigma_{L}^{\prime}\left(\mathbf{z}_{L}\right)$. For $\ell=L-1, \ldots, 1$ compute:
- $\boldsymbol{\delta}_{\ell}=\left(\mathbf{W}_{\ell+1}^{T} \boldsymbol{\delta}_{\ell+1}\right) \odot \sigma_{\ell}^{\prime}\left(\mathbf{z}_{\ell}\right)$
- $\frac{\partial c_{L}}{\partial \mathbf{w}_{\ell}}=\boldsymbol{\delta}_{\ell} \mathbf{a}_{\ell-1}^{T}$
- $\frac{\partial c_{L}}{\partial \mathbf{b}_{\ell}}=\boldsymbol{\delta}_{\ell}$

Update parameters using gradient descent:

$$
\left\{\begin{array}{l}
\mathbf{W}_{\ell} \leftarrow \mathbf{W}_{\ell}-\alpha \frac{\partial c_{L}}{\partial \mathbf{W}_{\ell}} \\
\mathbf{b}_{\ell} \leftarrow \mathbf{b}_{\ell}-\alpha \frac{\partial c^{2}}{\partial \mathbf{b}_{\ell}}
\end{array}\right.
$$

