

Sparse representation, dictionary Learning, and deep neural networks: Their connections and new algorithms

Mostafa Sadeghi

Electrical Engineering Department Sharif University of Technology Tehran, Iran.

June 2018

- Proximal operator
- Forward-backward Splitting

Sparse representation

- Background
- Iterative Sparsification-Projection
- Iterative Proximal Projection

Dictionary Learning

- Background
- learning low coherence dictionaries

Deep Neural Networks

- Background
- Progressive Neural Networks
- Structured Weight Matrices for Neural Networks

Conclusions

Proximal algorithms

- Proximal operator
- Forward-backward Splitting

・ロト ・四ト ・ヨト ・ヨト

æ

- 2 Sparse representation
- 3 Dictionary Learning
- 4 Deep Neural Networks
- 5 Conclusions

Proximal Algorithms

• Efficient first order algorithms. Suitable for nonsmooth, constrained, large-scale problems.

Proximal Algorithms

• Efficient first order algorithms. Suitable for nonsmooth, constrained, large-scale problems.

Proximal mapping [Parikh and Boyd, 2014]

 $g: \operatorname{dom}_g \to \mathbb{R} \cup \{+\infty\}$:

proper, lower-semicontinuous

$$\mathbf{prox}_{g}(\mathbf{u}) = \underset{\mathbf{x} \in \mathsf{dom}_{g}}{\operatorname{argmin}} \ g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}$$

Proximal Algorithms

• Efficient first order algorithms. Suitable for nonsmooth, constrained, large-scale problems.

Proximal mapping [Parikh and Boyd, 2014]

 $g: \ \operatorname{dom}_g \to \mathbb{R} \cup \{+\infty\} \text{:} \qquad \qquad \text{proper, lower-semicontinuous}$

$$\mathbf{prox}_{g}(\mathbf{u}) = \underset{\mathbf{x} \in \mathsf{dom}_{g}}{\operatorname{argmin}} \ g(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}$$

$$\mathbf{prox}_{\lambda g}(\mathbf{u}) \simeq \mathbf{u} - \lambda \nabla g(\mathbf{u})$$

Proximal algorithms

- Proximal operator
- Forward-backward Splitting

(日) (四) (문) (문) (문)

- 2 Sparse representation
- 3 Dictionary Learning
- 4 Deep Neural Networks
- 5 Conclusions

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + g(\mathbf{x})$$

- $f: \operatorname{dom}_f \to \mathbb{R}$
- $g: \operatorname{dom}_g \to \mathbb{R} \cup \{+\infty\}$

smooth (convex/non-convex)
non-smooth (convex/non-convex)

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + g(\mathbf{x})$$

- $f: \operatorname{dom}_f \to \mathbb{R}$
- $g: \operatorname{dom}_g \to \mathbb{R} \cup \{+\infty\}$

smooth (convex/non-convex)
non-smooth (convex/non-convex)

Descent lemma

 $f: \operatorname{dom}_f o \mathbb{R}$, smooth and L-gradient Lipschitz*, $\mu \in (0, 1/L]$

$$\forall \mathbf{x}, \mathbf{y} \in \mathsf{dom} f: \quad f(\mathbf{x}) \leq \tilde{f}(\mathbf{x}, \mathbf{y}) \triangleq f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{1}{2\mu} \|\mathbf{x} - \mathbf{y}\|_2^2$$

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + g(\mathbf{x})$$

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \tilde{f}(\mathbf{x}, \mathbf{x}_k) + g(\mathbf{x})$$

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + g(\mathbf{x})$$

$$\mathbf{x}_{k+1} = \operatorname*{argmin}_{\mathbf{x}} \quad \tilde{f}(\mathbf{x}, \mathbf{x}_k) + g(\mathbf{x})$$

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{x} - (\mathbf{x}_k - \mu \nabla f(\mathbf{x}_k))\|_2^2 + \mu \cdot g(\mathbf{x})$$

- 一司

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + g(\mathbf{x})$$

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \tilde{f}(\mathbf{x}, \mathbf{x}_k) + g(\mathbf{x})$$

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{x} - (\mathbf{x}_k - \mu \nabla f(\mathbf{x}_k))\|_2^2 + \mu \cdot g(\mathbf{x})$$

1 Forward step:
$$\mathbf{z}_k = \mathbf{x}_k - \mu \nabla f(\mathbf{x}_k)$$

2 Backward step:
$$\mathbf{x}_{k+1} = \mathbf{prox}_{\mu \cdot g}(\mathbf{z}_k)$$

Proximal algorithms

2 Sparse representation

Background

• Iterative Sparsification-Projection

(日) (四) (王) (王) (王)

æ

• Iterative Proximal Projection

3 Dictionary Learning

4 Deep Neural Networks

5 Conclusions

Background

Sparse representation

 $\mathbf{y} \approx x_1 \mathbf{d}_1 + x_2 \mathbf{d}_2 + \ldots + x_n \mathbf{d}_m = \mathbf{D}\mathbf{x} \mod x_i$'s are zero

* Adopted from M. Elad's slides

∃ ▶ ∢

Background

Sparse representation

$\mathbf{y} \approx x_1 \mathbf{d}_1 + x_2 \mathbf{d}_2 + \ldots + x_n \mathbf{d}_m = \mathbf{D} \mathbf{x} \mod x_i$'s are zero

^{*} Adopted from M. Elad's slides

• Signal restoration:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{e}$$

De-noising ($\mathbf{H} = \text{identity}$), inpainting ($\mathbf{H} = \text{random rows of identity}$), de-bluring ($\mathbf{H} = \text{blurring matrix}$), super resolution ($\mathbf{H} = \text{down sampling matrix}$), ...

Background

Sparse representation

$\mathbf{y} \approx x_1 \mathbf{d}_1 + x_2 \mathbf{d}_2 + \ldots + x_n \mathbf{d}_m = \mathbf{D}\mathbf{x} \mod x_i$'s are zero

* Adopted from M. Elad's slides

• Signal restoration:

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{e}$$

De-noising ($\mathbf{H} = \text{identity}$), inpainting ($\mathbf{H} = \text{random rows of identity}$), de-bluring ($\mathbf{H} = \text{blurring matrix}$), super resolution ($\mathbf{H} = \text{down sampling matrix}$), ...

 $\mathbf{x} \simeq \mathbf{D}\mathbf{a}, \ \mathbf{a}$: sparse

 $\min_{\mathbf{x},\mathbf{a}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \alpha \|\mathbf{x} - \mathbf{D}\mathbf{a}\|_2^2 + \beta \|\mathbf{a}\|_1$

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 + \lambda \|\mathbf{x}\|_1$$

$$\boxed{ \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2} + \lambda \|\mathbf{x}\|_{1} } \\ \mathbf{x}^{k+1} = \mathcal{S}_{\mu_{k}\lambda} (\mathbf{x}^{k} - \mu_{k}(\mathbf{D}\mathbf{x}_{k} - \mathbf{y}))$$

$$\boxed{ \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2} + \lambda \|\mathbf{x}\|_{1} } \\ \mathbf{x}^{k+1} = \mathcal{S}_{\mu_{k}\lambda} (\mathbf{x}^{k} - \mu_{k} (\mathbf{D}\mathbf{x}_{k} - \mathbf{y}))$$

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 + \lambda \|\mathbf{x}\|_0$$

$$\frac{\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2} + \lambda \|\mathbf{x}\|_{1}}{\mathbf{x}^{k+1} = S_{\mu_{k}\lambda}(\mathbf{x}^{k} - \mu_{k}(\mathbf{D}\mathbf{x}_{k} - \mathbf{y}))}$$

 $-\lambda = 0$

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_{2} + \lambda \|\mathbf{x}\|_{0} \\
\mathbf{x}^{k+1} = \mathcal{H}_{\mu_{k}\lambda}(\mathbf{x}^{k} - \mu_{k}(\mathbf{D}\mathbf{x}_{k} - \mathbf{y}))$$

 $\mu_k \in (0, 1/\sigma_{\max}(\mathbf{D}))$

 \vec{x}

 $\mu_k \in (0, 1/\sigma_{\max}(\mathbf{D}))$

Examples: IST [Daubechies et al., 2004], GPSR [Figueiredo et al., 2007], IHT [Blumensath and Davies, 2009], AMP [Donoho et al., 2009], EMGMAMP [Vila et al., 2013], NESTA [Becker et al., 2009], SCAD [Gasso et al., 2009].

• ℓ_0 norm approximation. Approximate ℓ_0 norm with a smooth function. Smoothed L0 (SL0) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al., 2016]

• ℓ_0 norm approximation. Approximate ℓ_0 norm with a smooth function. Smoothed L0 (SL0) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al., 2016]

$$\|\mathbf{x}\|_{\sigma} = n - \sum_{i=1}^{n} f_{\sigma}(x_i)$$

$$f_{\sigma}(x) = \exp(-\frac{x^2}{\sigma^2})$$

• ℓ_0 norm approximation. Approximate ℓ_0 norm with a smooth function. Smoothed L0 (SL0) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al., 2016]

$$\|\mathbf{x}\|_{\sigma} = n - \sum_{i=1}^{n} f_{\sigma}(x_i)$$

$$f_{\sigma}(x) = \exp(-\frac{x^2}{\sigma^2})$$

| . . *.*.

When
$$\sigma \to 0$$
: $\|\mathbf{x}\|_{\sigma} \to \|\mathbf{x}\|_{0}$

• ℓ_0 norm approximation. Approximate ℓ_0 norm with a smooth function. Smoothed L0 (SL0) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al., 2016]

$$\|\mathbf{x}\|_{\sigma} = n - \sum_{i=1}^{n} f_{\sigma}(x_i)$$

$$f_{\sigma}(x) = \exp(-\frac{x^2}{\sigma^2})$$

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{\sigma} \quad \text{s.t.} \quad \mathbf{y} = \mathbf{D}\mathbf{x}$$

• ℓ_0 norm approximation. Approximate ℓ_0 norm with a smooth function. Smoothed L0 (SL0) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al., 2016]

$$\begin{split} \|\mathbf{x}\|_{\sigma} &= n - \sum_{i=1}^{n} f_{\sigma}(x_{i}) \\ f_{\sigma}(x) &= \exp(-\frac{x^{2}}{\sigma^{2}}) \\ \hline \\ \mathbb{W}hen \ \sigma \to 0: \ \|\mathbf{x}\|_{\sigma} \to \|\mathbf{x}\|_{0} \\ \hline \\ \hline \\ \frac{1 - f_{0}(x)}{1 - f_{0}(x)} \\ \frac{1 - f_{0}(x)}{\|\mathbf{x}\|_{1} - f_{0}(x)} \\ \hline \\ \frac{1 - f_{0}(x)}{\|\mathbf{x}\|_{1} - f_{0}(x)} \\ \hline \\ \frac{1 - f_{0}(x)}{\|\mathbf{x}\|_{1} - f_{0}(x)} \\ \frac{1 - f_{0}(x)}{\|\mathbf{x}$$

Proximal algorithms

2 Sparse representation

- Background
- Iterative Sparsification-Projection

・ロト ・四ト ・ヨト ・ヨト

2

• Iterative Proximal Projection

3 Dictionary Learning

4 Deep Neural Networks

5 Conclusions

¹ Iterative Sparsification-Projection (ISP)

 1
 M. Sadeghi, M. Babaie-Zadeh, "Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation", IEEE

 Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
 < □ > < □ > < □ > < □ > < ≥ > < ≥ > < ≥ < ?) <</td>

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN

- ¹ Iterative Sparsification-Projection (ISP)
 - Revisiting the SL0 algorithm:

$$\min_{\mathbf{x}\in\mathbb{R}^n} \underbrace{\sum_{i=1}^n \left(1 - \exp(-\frac{x_i^2}{\sigma^2})\right)}_{f_{\sigma}(\mathbf{x})} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 \le \epsilon$$

 1
 M. Sadeghi, M. Babaie-Zadeh, "Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation", IEEE

 Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
 < □ > < ⑦ > < ② > < ② > < ○ < ○ </td>

- ¹ Iterative Sparsification-Projection (ISP)
 - Revisiting the SL0 algorithm:

$$\min_{\mathbf{x}\in\mathbb{R}^n} \underbrace{\sum_{i=1}^n \left(1 - \exp(-\frac{x_i^2}{\sigma^2})\right)}_{f_{\sigma}(\mathbf{x})} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 \le \epsilon$$

Lemma (Lipschitz constant)

The function f_{σ} (defined above) is gradient Lipschitz with constant $L = \frac{2}{\sigma^2}$.

June 2018

7 / 48

 ¹ M. Sadeghi, M. Babaie-Zadeh, "Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation", IEEE

 Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ¹ Iterative Sparsification-Projection (ISP)
 - Revisiting the SL0 algorithm:

$$\min_{\mathbf{x}\in\mathbb{R}^n} \underbrace{\sum_{i=1}^n \left(1 - \exp(-\frac{x_i^2}{\sigma^2})\right)}_{f_{\sigma}(\mathbf{x})} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 \le \epsilon$$

Lemma (Lipschitz constant)

The function f_{σ} (defined above) is gradient Lipschitz with constant $L = \frac{2}{\sigma^2}$.

$$\min_{\mathbf{x}\in\mathbb{R}^n} \underbrace{\sum_{i=1}^n \left(1 - \exp(-\frac{x_i^2}{\sigma^2})\right)}_{f(\mathbf{x})} + \underbrace{\delta_{\mathcal{C}}(\mathbf{x})}_{g(\mathbf{x})} \rightarrow \mathbf{x}_{k+1} = \mathbf{prox}_{\delta_{\mathcal{C}}}\left(\mathbf{x}_k - \mu_{\sigma}\nabla f(\mathbf{x}_k)\right)\right)$$

 $\delta_{\mathcal{C}}(\mathbf{x}) = 0$ if $\|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 \le \epsilon$ and ∞ otherwise.

 1
 M. Sadeghi, M. Babaie-Zadeh, "Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation", IEEE

 Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⋮ > < ⋮ > ○ < </td>

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN

Theorem (SL0 convergence)

Let $\{\mathbf{x}_k\}$ be the sequence generated by the SL0 algorithm for a fixed σ . Then:

- This sequence is bounded and convergent, which means that any accumulation point x^* of $\{x_k\}$ is a critical point, and
- the sequence of objective values, i.e., $\{f_{\sigma}(\mathbf{x}_k) + \delta_{\mathcal{C}}(\mathbf{x}_k)\}_{k \geq 0}$, is non-increasing.

Theorem (SL0 convergence)

Let $\{\mathbf{x}_k\}$ be the sequence generated by the SL0 algorithm for a fixed σ . Then:

- This sequence is bounded and convergent, which means that any accumulation point x^* of $\{x_k\}$ is a critical point, and
- the sequence of objective values, i.e., $\{f_{\sigma}(\mathbf{x}_k) + \delta_{\mathcal{C}}(\mathbf{x}_k)\}_{k \geq 0}$, is non-increasing.

Corollary

If $\mu_{\sigma} \in (0,2/L]$, or equivalently, if $\mu \in (0,1],$ then the SLO algorithm converges.

• ISP Motivation:

$$\begin{cases} \mathbf{z}_k = \mathbf{x}_k - \mu_{\sigma} \nabla f(\mathbf{x}_k) \triangleq \mathcal{T}_{\sigma}^0(\mathbf{x}_k) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{z}_k) \end{cases}$$

• ISP Motivation:

$$\begin{cases} \mathbf{z}_k = \mathbf{x}_k - \mu_{\sigma} \nabla f(\mathbf{x}_k) \triangleq \mathcal{T}_{\sigma}^0(\mathbf{x}_k) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{z}_k) \end{cases}$$

$$\begin{aligned} \mathcal{T}_{\sigma}^{0}(x) &= x \cdot (1 - \exp(-\frac{x^{2}}{\sigma^{2}})) \\ & (\mu_{\sigma} = \frac{\sigma^{2}}{2}) \end{aligned}$$

Gradient descent interpretation of proximal mapping!

 $\|\mathbf{x}\|_{\sigma} \text{ smoothed of } \|\mathbf{x}\|_{0} \ \Rightarrow \ \mathbf{x} - \mu_{\sigma} \nabla \|\mathbf{x}\|_{\sigma} \text{ behaves like } \mathbf{prox}_{\mu_{\sigma}}(\mathbf{x}) = \mathsf{hard-thr}$
Iterative Sparsification-Projection

Gradient descent interpretation of proximal mapping!

 $\|\mathbf{x}\|_{\sigma} \text{ smoothed of } \|\mathbf{x}\|_{0} \ \Rightarrow \ \mathbf{x} - \mu_{\sigma} \nabla \|\mathbf{x}\|_{\sigma} \text{ behaves like } \mathbf{prox}_{\mu_{\sigma}}(\mathbf{x}) = \mathsf{hard-thr}$

Algorithm 1 SL0	Algorithm 2 ISP		
1: Require: y, D, σ_0 , σ_{\min} , $c > 0$, μ , I	1: Require: y , D , τ_0 , τ_{\min} , $c > 0$, I		
2: Initialization: $\mathbf{x} = \mathbf{D}^{\dagger} \mathbf{y}, \ \sigma = \sigma_0$	2: Initialization: $\mathbf{x} = \mathbf{D}^{\dagger}\mathbf{y}, \ \tau = \tau_0$		
3: while $\sigma > \sigma_{\min}$ do	3: while $ au > au_{\min}$ do		
4: for $i = 1, 2,, I$ do	4: for $i = 1, 2,, I$ do		
5: $\tilde{\mathbf{x}} = \mathbf{x} - \mu \cdot \sigma^2 \nabla \ \mathbf{x}\ _{\sigma}$	5: $\tilde{\mathbf{x}} = \mathcal{T}_{\tau}(\mathbf{x})$		
6: $\mathbf{x} = \tilde{\mathbf{x}} - \mathbf{D}^{\dagger} (\mathbf{D} \tilde{\mathbf{x}} - \mathbf{y})$	6: $\mathbf{x} = \tilde{\mathbf{x}} - \mathbf{D}^{\dagger} (\mathbf{D} \tilde{\mathbf{x}} - \mathbf{y})$		
7: end for	7: end for		
8: $\sigma \leftarrow c \cdot \sigma$	8: $\tau \leftarrow c \cdot \tau$		
9: end while	9: end while		
10: Output: x	10: Output: x		

Iterative Sparsification-Projection

Gradient descent interpretation of proximal mapping!

 $\|\mathbf{x}\|_{\sigma} \text{ smoothed of } \|\mathbf{x}\|_{0} \ \Rightarrow \ \mathbf{x} - \mu_{\sigma} \nabla \|\mathbf{x}\|_{\sigma} \text{ behaves like } \mathbf{prox}_{\mu_{\sigma}}(\mathbf{x}) = \mathsf{hard-thr}$

Algo	lgorithm 1 SL0 Algorithm 2 ISP				
1: 1	1: Require: y , D , σ_0 , σ_{\min} , $c > 0$, μ , I		1: Require: y, D , τ_0 , τ_{\min} , $c > 0$, I		
2: I	nitialization: $\mathbf{x} = \mathbf{D}^{\dagger} \mathbf{y}, \ \sigma = \sigma_0$	2: Initialization: $\mathbf{x} = \mathbf{D}^{\dagger} \mathbf{y}, \ \tau = \tau_0$			
3: W	while $\sigma > \sigma_{\min}$ do	3: while $\tau > \tau_{\min}$ do			
4:	for $i=1,2,\ldots,I$ do	4:	for $i=1,2,\ldots,I$ do		
5:	$\tilde{\mathbf{x}} = \mathbf{x} - \boldsymbol{\mu} \cdot \boldsymbol{\sigma}^2 \nabla \ \mathbf{x}\ _{\boldsymbol{\sigma}}$	5:	$ ilde{\mathbf{x}} = \mathcal{T}_{ au}(\mathbf{x})$		
6:	$\mathbf{x} = \tilde{\mathbf{x}} - \mathbf{D}^{\dagger} (\mathbf{D} \tilde{\mathbf{x}} - \mathbf{y})$	6:	$\mathbf{x} = \tilde{\mathbf{x}} - \mathbf{D}^{\dagger} (\mathbf{D} \tilde{\mathbf{x}} - \mathbf{y})$		
7:	end for	7:	end for		
8:	$\sigma \leftarrow c \cdot \sigma$	8:	$\tau \leftarrow c \cdot \tau$		
9: e	nd while	9: e	nd while		
10: C)utput: x	10: C	Dutput: x		

$$\mathfrak{W} \mathcal{T}_{\tau} \text{ a sparsifying function} = \begin{cases} x - \mu_{\sigma} \nabla f_{\sigma}(x) & (\mathsf{ISP} - \ell_0, \mathsf{ISP} - \ell_1) \\ \mathbf{prox}_{\mu_{\sigma}}(\mathbf{x}) & (\mathsf{ISP}-\mathsf{Hard}, \mathsf{ISP}-\mathsf{Soft}) \end{cases}$$

Simulations

Recovery performance. Synthetic data: $\mathbf{y}_{m \times 1} = \mathbf{D}_{m \times n} \mathbf{x}_{n \times 1} + \mathbf{e}_{m \times 1}$. Bernoulli-Gaussian sparse signal. Gaussian \mathbf{D} and noise. m = 400, n = 1000. Different measurement matrices. \mathbf{D} : sparse, ill-conditioned, non-zero mean, low-rank.

Sparsity, Dictionary Learning, and DNN

Proximal algorithms

2 Sparse representation

- Background
- Iterative Sparsification-Projection

<ロ> (四) (四) (三) (三) (三)

臣

• Iterative Proximal Projection

3 Dictionary Learning

4 Deep Neural Networks

5 Conclusions

$$\min_{\mathbf{x}} J(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

 $\square J$: non-smooth, non-convex

2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, "Sparse signal recovery via iterative proximal projection", *IEEE Trans. Sig. Proc.*, vol. 66, no. 4, pp. 879–894, 2018.

$$\min_{\mathbf{x}} J(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

 $\square J$: non-smooth, non-convex

2

IPP

Main idea

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) \quad \text{s.t. } \mathbf{z} = \mathbf{x}$$

2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, "Sparse signal recovery via iterative proximal projection", *IEEE Trans. Sig. Proc.*, vol. 66, no. 4, pp. 879–894, 2018. \mapsto (\exists) \Rightarrow (\exists) (d) (d

$$\min_{\mathbf{x}} J(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

 $\square J$: non-smooth, non-convex

2

IPP

Main idea

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) \quad \text{s.t. } \mathbf{z} = \mathbf{x}$$

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) + \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, "Sparse signal recovery via iterative proximal projection", IEEE Trans. Sig. Proc., vol. 66, no. 4, pp. 879–894, 2018. S (

12 / 48

$$\min_{\mathbf{x}} J(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

 $\square J$: non-smooth, non-convex

2

IPP

Main idea

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) \quad \text{s.t. } \mathbf{z} = \mathbf{x}$$

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) + \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{z}\|_2^2$$

$$\begin{cases} \mathbf{z}_{k+1} = \operatorname{argmin}_{\mathbf{z}} \ \alpha J(\mathbf{z}) + \frac{1}{2} \|\mathbf{z} - \mathbf{x}_k\|_2^2 \\ \mathbf{x}_{k+1} = \operatorname{argmin}_{\mathbf{x}} \ \delta_{\mathcal{C}}(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}_{k+1}\|_2^2 \end{cases}$$

2

$$\min_{\mathbf{x}} J(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \epsilon$$

 $\square J$: non-smooth, non-convex

2

IPP

Main idea

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) \quad \text{s.t. } \mathbf{z} = \mathbf{x}$$

$$\min_{\mathbf{x},\mathbf{z}} J(\mathbf{z}) + \delta_{\mathcal{C}}(\mathbf{x}) + \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

 $\begin{cases} \mathbf{z}_{k+1} = \operatorname{argmin}_{\mathbf{z}} \ \alpha J(\mathbf{z}) + \frac{1}{2} \|\mathbf{z} - \mathbf{x}_k\|_2^2 & \left\{ \tilde{\mathbf{x}}_k = \mathbf{x}_k + w \cdot (\mathbf{x}_k - \mathbf{x}_{k-1}) \\ \mathbf{x}_{k+1} = \operatorname{argmin}_{\mathbf{x}} \ \delta_{\mathcal{C}}(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}_{k+1}\|_2^2 & \left\{ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}}\left(\mathsf{prox}_{\alpha \cdot J}(\tilde{\mathbf{x}}_k) \right) \right\} \end{cases}$

2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, "Sparse signal recovery via iterative proximal projection", *IEEE Trans. Sig. Proc.*, vol. 66, no. 4, pp. 879–894, 2018. \triangleright (\bigcirc) \leftarrow (\bigcirc) (\circ) (\bigcirc) (\circ) (\bigcirc) (\circ)

• Difficult to prove convergence. An alternative algorithm with convergence proof!

• Difficult to prove convergence. An alternative algorithm with convergence proof!

IPP

An approximate solver:

$$\begin{cases} \tilde{\mathbf{x}}_k = \mathbf{x}_k + w \cdot (\mathbf{x}_k - \mathbf{x}_{k-1}) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}} \Big(\mathsf{prox}_{\alpha \cdot J}(\tilde{\mathbf{x}}_k) \Big) \end{cases}$$

• Difficult to prove convergence. An alternative algorithm with convergence proof!

IPP

An approximate solver:

$$\begin{cases} \tilde{\mathbf{x}}_{k} = \mathbf{x}_{k} + w \cdot (\mathbf{x}_{k} - \mathbf{x}_{k-1}) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}} \Big(\mathsf{prox}_{\alpha \cdot J}(\tilde{\mathbf{x}}_{k}) \Big) & \rightarrow \begin{cases} \tilde{\mathbf{x}}_{k} = \mathbf{x}_{k} + w \cdot (\mathbf{x}_{k} - \mathbf{x}_{k-1}) \\ \mathbf{z}_{k+1} = \mathsf{prox}_{\mu_{z} \cdot \alpha J}(\mathbf{z}_{k} + \mu_{z}(\tilde{\mathbf{x}}_{k} - \mathbf{z}_{k})) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{x}_{k} + \mu_{x}(\mathbf{z}_{k+1} - \mathbf{x}_{k})) \end{cases}$$

 $\blacksquare 0 < \mu_x, \mu_z < 1$. If $\mu_x, \mu_z \to 1$ the two algorithms coincide!

• Difficult to prove convergence. An alternative algorithm with convergence proof!

IPP

An approximate solver:

$$\begin{cases} \tilde{\mathbf{x}}_{k} = \mathbf{x}_{k} + w \cdot (\mathbf{x}_{k} - \mathbf{x}_{k-1}) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}} \Big(\mathsf{prox}_{\alpha \cdot J}(\tilde{\mathbf{x}}_{k}) \Big) & \rightarrow \begin{cases} \tilde{\mathbf{x}}_{k} = \mathbf{x}_{k} + w \cdot (\mathbf{x}_{k} - \mathbf{x}_{k-1}) \\ \mathbf{z}_{k+1} = \mathsf{prox}_{\mu_{z} \cdot \alpha J}(\mathbf{z}_{k} + \mu_{z}(\tilde{\mathbf{x}}_{k} - \mathbf{z}_{k})) \\ \mathbf{x}_{k+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{x}_{k} + \mu_{x}(\mathbf{z}_{k+1} - \mathbf{x}_{k})) \end{cases}$$

 $\square 0 < \mu_x, \mu_z < 1$. If $\mu_x, \mu_z \to 1$ the two algorithms coincide!

Algorithm Iterative Proximal Projection (IPP) 1: Inputs: v. A. ϵ , α_i , α_f , τ , 0 < c < 1, w, $0 < \mu_r$, $\mu_z < 1$ 2: Initialization: k = 0, $\mathbf{x}_0 = \mathbf{z}_0 = \mathbf{A}^{\dagger} \mathbf{y}$, $\alpha = \alpha_i$ 3: while $\alpha > \alpha_f$ do 4. while $\| \mathbf{x}_{k} - \mathbf{x}_{k-1} \|_{2} > \tau$ do $\tilde{\mathbf{x}}_{k} = \mathbf{x}_{k} + w \cdot (\mathbf{x}_{k} - \mathbf{x}_{k-1})$ 5. $\mathbf{z}_{k+1} = \operatorname{prox}_{\mu_z, \alpha, J} (\mathbf{z}_k + \mu_z (\tilde{\mathbf{x}}_k - \mathbf{z}_k))$ 6: $\mathbf{x}_{k+1} = \mathcal{P}_A \left(\mathbf{x}_k + \mu_T (\mathbf{z}_{k+1} - \mathbf{x}_k) \right)$ 7. $k \rightarrow k + 1$ 8. end while Q. 10. $\alpha \leftarrow c \cdot \alpha$ 11. end while 12: Output: x+ <u>

</u>

Theorem (IPP convergence)

In the IPP algorithm, assume that $0 \le w < \frac{1}{\max(\mu_x,\mu_z)} - 1$. The sequence $\left\{ \mathbf{u}_k \triangleq (\mathbf{x}_k, \mathbf{z}_k) \right\}_{k=0}^{\infty}$ generated by IPP for each value of α (the inner-loop iterations) converges to a critical point, \mathbf{u}^* , of the cost function. Furthermore, if the cost function satisfies the Kurdyka-Łojasiewicz (KL) property [Bolt et al., 2014] with $\psi(t) = c \cdot t^{1-\theta}$ for some t > 0 and $\theta \in [0, 1)$, then:

- If $\theta = 0$ then the sequence $\{\mathbf{u}_k\}_{k>0}$ converges in a finite number of steps.
- If $\theta \in (0, 1/2]$ then there exist d > 0 and $\tau \in [0, 1)$ such that $\|\mathbf{u}_k \mathbf{u}^*\|_2 \le d \cdot \tau^k$.

• If $\theta \in (1/2, 1)$ then there exist d > 0 such that $\|\mathbf{u}_k - \mathbf{u}^*\|_2 \le d \cdot k^{\frac{\theta - 1}{2\theta - 1}}$.

Simulations

Block based compressed image recovery: 50% overlapping blocks, Gaussian measurement, $\delta=$ sampling rate.

	$\delta = 0.1$			$\delta = 0.2$		
	House	Barbara	Monarch	House	Barbara	Monarch
ℓ_q	25.13	22.99	19.87	28.56	25.30	22.71
GOMP	25.00	22.38	19.03	26.68	23.94	21.23
SCSA	25.11	22.96	19.88	28.62	25.26	22.64
EMGMAMP	25.02	22.94	19.69	27.96	25.06	22.22
IPP $(w = 0)$	25.31	23.08	20.46	27.72	25.36	22.95
$\mathrm{IPP}\;(w=0.85)$	25.57	23.38	20.67	28.65	25.63	23.45
		$\delta = 0.3$			$\delta = 0.4$	
	House	$\delta = 0.3$ Barbara	Monarch	House	$\delta = 0.4$ Barbara	Monarch
ℓ_q	House 31.17	$\delta = 0.3$ Barbara 27.38	Monarch 24.97	House 34.15	$\delta = 0.4$ Barbara	Monarch 27.65
ℓ_q GOMP	House 31.17 30.85	$\delta = 0.3$ Barbara 27.38 27.14	Monarch 24.97 24.43	House 34.15 33.59	$\delta = 0.4$ Barbara 30.17 29.69	Monarch 27.65 27.10
ℓ_q GOMP SCSA	House 31.17 30.85 31.35	$\delta = 0.3$ Barbara 27.38 27.14 27.37	Monarch 24.97 24.43 24.99	House 34.15 33.59 34.49	$\delta = 0.4$ Barbara 30.17 29.69 30.23	Monarch 27.65 27.10 27.79
ℓ_q GOMP SCSA EMGMAMP	House 31.17 30.85 31.35 30.91	$\delta = 0.3$ Barbara 27.38 27.14 27.37 27.15	Monarch 24.97 24.43 24.99 24.65	House 34.15 33.59 34.49 33.64	$\delta = 0.4$ Barbara 30.17 29.69 30.23 29.72	Monarch 27.65 27.10 27.79 27.06
ℓ_q GOMP SCSA EMGMAMP IPP (w = 0)	House 31.17 30.85 31.35 30.91 31.11	$\delta = 0.3$ Barbara 27.38 27.14 27.37 27.15 27.61	Monarch 24.97 24.43 24.99 24.65 24.73	House 34.15 33.59 34.49 33.64 33.56	$\delta = 0.4$ Barbara 30.17 29.69 30.23 29.72 30.41	Monarch 27.65 27.10 27.79 27.06 27.70

[ㅁ▶ 《國▶ 《콜▶ 《콜▶]

Proximal algorithms

2 Sparse representation

Oictionary Learning

- Background
- learning low coherence dictionaries

4 Deep Neural Networks

5 Conclusions

Dictionary Learning

• Learn a sparsifying dictionary from training data: $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_L]$.

Dictionary Learning Problem

$$\min_{\mathbf{D},\mathbf{X}} \quad \sum_{i=1}^{L} \frac{1}{2} \|\mathbf{y}_i - \mathbf{D}\mathbf{x}_i\|_2 = \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \mathbf{D} \in \mathcal{D}, \ \mathbf{X} \in \mathcal{X}$$

Dictionary Learning

• Learn a sparsifying dictionary from training data: $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_L]$.

Dictionary Learning Problem

$$\min_{\mathbf{D},\mathbf{X}} \quad \sum_{i=1}^{L} \frac{1}{2} \|\mathbf{y}_i - \mathbf{D}\mathbf{x}_i\|_2 = \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \mathbf{D} \in \mathcal{D}, \ \mathbf{X} \in \mathcal{X}$$

Alternating minimization

- Start with $(\mathbf{D}^{(0)}, \mathbf{X}^{(0)})$. Alternate between:
 - Sparse representation: $\mathbf{X}^{(k+1)} = \operatorname{argmin}_{\mathbf{X} \in \mathcal{X}} \frac{1}{2} \|\mathbf{Y} \mathbf{D}^{(k)}\mathbf{X}\|_{F}^{2}$ P OMP, IST, SL0, ...
 - ② Dictionary update: $\mathbf{D}^{(k+1)} = \operatorname{argmin}_{\mathbf{D} \in \mathcal{D}} \frac{1}{2} \|\mathbf{Y} \mathbf{D}\mathbf{X}^{(k+1)}\|_{F}^{2}$ 13 MOD, KSVD, ...

- Signal/image restoration and enhancement
 - Image denoising [Elad et al., 2006]:

$$y = x + e$$

Learn the dictionary from the noisy image itself!

$$\hat{\mathbf{x}} = \underset{\mathbf{x}, \mathbf{D}, \{\alpha_{ij}\}}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \sum_{i,j} \|\mathbf{R}_{ij}\mathbf{x} - \mathbf{D}\alpha_{ij}\|_{2}^{2} \quad \text{s.t.} \quad \|\alpha_{ij}\|_{0} \le \tau$$

- Speech denoising [Sigg et al., 2012; Jafari et al., 2011]
- Parameter dictionary learning [Yaghoobi et al., 2009; Ataee et al., 2010]:

Learning structured atoms:

• Example. Gammatone filters have shown similarities with the human auditory system:

- Multi-modal dictionary learning [Monaci et al., 2007; Zhuang et al., 2013]
 - Learning multi-modal atoms to describe underlying generating cause, speaker localization, and so on

- Multi-modal dictionary learning [Monaci et al., 2007; Zhuang et al., 2013]
 - Learning multi-modal atoms to describe underlying generating cause, speaker localization, and so on

- Stereo image representation [Tosic et al., 2011]
 - Efficient image representation to perform different vision task like camera pose estimation

• Supervised dictionary learning [Mairal et al., 2010; Zhang et al., 2010]

$$\min_{\mathbf{D},\mathbf{X}} \underbrace{\frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}}_{\text{representation power}} + \underbrace{\lambda \|\mathbf{T} - \mathbf{W}\mathbf{X}\|_{F}^{2}}_{\text{discrimination power}} \quad \text{s.t.} \quad \|\mathbf{X}\|_{0} \leq \tau$$

- T: label matrix
- W: linear classifier

Mutual Coherence

For a dictionary $\mathbf{D} \in \mathbb{R}^{n imes m}$, its mutual coherence is defined as

$$\mu(\mathbf{D}) \triangleq \max_{i \neq j} \frac{|\langle \mathbf{d}_i, \mathbf{d}_j \rangle|}{\|\mathbf{d}_i\|_2 \cdot \|\mathbf{d}_j\|_2}$$

The Welch bound:

$$\mu \ge \sqrt{\frac{m-n}{n(m-1)}}$$

Mutual Coherence

For a dictionary $\mathbf{D} \in \mathbb{R}^{n imes m}$, its mutual coherence is defined as

$$\mu(\mathbf{D}) \triangleq \max_{i \neq j} \frac{|\langle \mathbf{d}_i, \mathbf{d}_j \rangle|}{\|\mathbf{d}_i\|_2 \cdot \|\mathbf{d}_j\|_2}$$

The Welch bound:

$$\mu \ge \sqrt{\frac{m-n}{n(m-1)}}$$

Low MC dictionaries

A dictionary with low MC is desired for sparse recovery algorithms.

Subscript{Guaranteed sparse recovery as long as $\|\mathbf{x}\|_0 \leq \frac{1}{2}(1 + \frac{1}{\mu(\mathbf{D})})$

• Regularized:

$$\begin{array}{c|c} \min_{\mathbf{D}\in\mathcal{D}} & \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} + \lambda \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{F}^{2} \\ \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{F}^{2} = \sum_{i\neq j} |\langle \mathbf{d}_{i}, \mathbf{d}_{j}\rangle|^{2} + \sum_{i} (\langle \mathbf{d}_{i}, \mathbf{d}_{i}\rangle - 1)^{2}
\end{array}$$

Bounded Self Coherence (BSC) [Sigg et. al, 2012], Gradient Projection (GP) [Bao et. al, 2015]

- 4 @ ト 4 三 ト 4

• Regularized:

$$\begin{aligned} \min_{\mathbf{D}\in\mathcal{D}} \quad \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 + \lambda \|\mathbf{D}^T\mathbf{D} - \mathbf{I}\|_F^2 \\ \|\mathbf{D}^T\mathbf{D} - \mathbf{I}\|_F^2 &= \sum_{i\neq j} |\langle \mathbf{d}_i, \mathbf{d}_j\rangle|^2 + \sum_i (\langle \mathbf{d}_i, \mathbf{d}_i\rangle - 1)^2 \end{aligned}$$

Bounded Self Coherence (BSC) [Sigg et. al, 2012], Gradient Projection (GP) [Bao et. al, 2015]

• Constrained:
$$\min_{\mathbf{D}\in\mathcal{D}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \mu(\mathbf{D}) \leq \mu_0$$

Iterative Projection Rotation (IPR) [Barchiesi and Plumbley, 2013]

• Regularized:

$$\begin{aligned} & \lim_{\mathbf{D}\in\mathcal{D}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} + \frac{\lambda \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{F}^{2}}{\|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{F}^{2}} \\ & \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{F}^{2} = \sum_{i\neq j} |\langle \mathbf{d}_{i}, \mathbf{d}_{j}\rangle|^{2} + \sum_{i} (\langle \mathbf{d}_{i}, \mathbf{d}_{i}\rangle - 1)^{2} \end{aligned}$$

Bounded Self Coherence (BSC) [Sigg et. al, 2012], Gradient Projection (GP) [Bao et. al, 2015]

• Constrained:
$$\min_{\mathbf{D}\in\mathcal{D}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \mu(\mathbf{D}) \leq \mu_0$$

Iterative Projection Rotation (IPR) [Barchiesi and Plumbley, 2013]

^{IMP} Uses a two-step procedure: decorrelation + rotation

2 Sparse representation

Oictionary Learning

- Background
- learning low coherence dictionaries

(日) (四) (문) (문) (문)

4 Deep Neural Networks

5 Conclusions

Low coherence DL

$$\mu(\mathbf{D}) = \|\mathbf{D}^T \mathbf{D} - \mathbf{I}\|_{\infty} \quad \|\mathbf{A}\|_{\infty} \triangleq \max_{i,j} |a_{ij}|$$

Proposed problems^a:

$$\begin{cases} \min_{\mathbf{D}\in\mathcal{D}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} + \lambda \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{\infty} \\ \min_{\mathbf{D}\in\mathcal{D}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} \quad \text{s.t.} \quad \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{\infty} \le \mu_{0} \end{cases}$$

^a M. Sadeghi and M. Babaie-Zadeh, "Learning low-coherence dictionaries for sparse representation", Sig. Proc., 2018 (submitted).

Low coherence DL

$$\mu(\mathbf{D}) = \|\mathbf{D}^T \mathbf{D} - \mathbf{I}\|_{\infty} \quad \|\mathbf{A}\|_{\infty} \triangleq \max_{i,j} |a_{ij}|$$

Proposed problems^a:

$$\begin{cases} \min_{\mathbf{D}\in\mathcal{D}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} + \lambda \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{\infty} \\ \min_{\mathbf{D}\in\mathcal{D}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} \quad \text{s.t.} \quad \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}\|_{\infty} \le \mu_{0} \end{cases}$$

^a M. Sadeghi and M. Babaie-Zadeh, "Learning low-coherence dictionaries for sparse representation", Sig. Proc., 2018 (submitted).

Main idea

• Introduce $\mathbf{G} = \mathbf{D}^T \mathbf{D} - \mathbf{I}$. Use penalty method + proximal algorithm!

$$\min_{\mathbf{D}\in\mathcal{D},\mathbf{G}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 + \frac{1}{2\alpha} \|\mathbf{G} - \mathbf{D}^T\mathbf{D} + \mathbf{I}\|_F^2 + \lambda g(\mathbf{G})$$

Low coherence DL

$$\mu(\mathbf{D}) = \|\mathbf{D}^T \mathbf{D} - \mathbf{I}\|_{\infty} \quad \|\mathbf{A}\|_{\infty} \triangleq \max_{i,j} |a_{ij}|$$

Proposed problems^a:

$$\begin{cases} \min_{\mathbf{D}\in\mathcal{D}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 + \lambda \|\mathbf{D}^T\mathbf{D} - \mathbf{I}\|_{\infty} \\ \min_{\mathbf{D}\in\mathcal{D}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \quad \text{s.t.} \quad \|\mathbf{D}^T\mathbf{D} - \mathbf{I}\|_{\infty} \le \mu_0 \end{cases}$$

M. Sadeghi and M. Babaie-Zadeh, "Learning low-coherence dictionaries for sparse representation", Sig. Proc., 2018 (submitted).

Main idea

• Introduce $\mathbf{G} = \mathbf{D}^T \mathbf{D} - \mathbf{I}$. Use penalty method + proximal algorithm!

$$\begin{split} & \min_{\mathbf{D}\in\mathcal{D},\mathbf{G}} \; \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2} + \frac{1}{2\alpha} \|\mathbf{G} - \mathbf{D}^{T}\mathbf{D} + \mathbf{I}\|_{F}^{2} + \lambda g(\mathbf{G}) \\ g(\mathbf{G}) &= \begin{cases} \|\mathbf{G}\|_{\infty} & (\text{regularized}) \\ \delta_{\mathcal{C}}(\mathbf{G}), \quad \mathcal{C} \triangleq \{\mathbf{G} \mid \|\mathbf{G}\|_{\infty} \leq \mu_{0}\} & (\text{constrained}) \end{cases} \end{split}$$

$\mathsf{Updating}\ \mathbf{G}$

Let g denote the function $\eta \|.\|_{\infty}$: $\mathbb{R}^{N \times N} \to \mathbb{R}$. The proximal mapping of g is given by

$$\mathsf{prox}_g(\mathbf{U}) = \mathbf{U} - P_{\frac{\eta}{1}}(\mathbf{U})$$

where, $P_1(.): \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$ is the projection onto the ℓ_1 norm-ball of radius η .

$\mathsf{Updating}\ \mathbf{G}$

Let g denote the function $\eta \|.\|_{\infty}$: $\mathbb{R}^{N \times N} \to \mathbb{R}$. The proximal mapping of g is given by

$$\mathsf{prox}_g(\mathbf{U}) = \mathbf{U} - P_{\frac{\eta}{1}}(\mathbf{U})$$

where, $P_1^{\eta}(.): \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$ is the projection onto the ℓ_1 norm-ball of radius η .

Updating \mathbf{D}

The gradient of $\frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 + \frac{1}{2\alpha} \|\mathbf{G} - \mathbf{D}^T \mathbf{D} + \mathbf{I}\|_F^2$ with respect to \mathbf{D} is Lipschitz continuous over \mathcal{D} with constant

$$L = \|\mathbf{X}\mathbf{X}^T\| + \frac{6N + 2\|\mathbf{G}\|_F}{2\alpha}$$

Regularized Incoherent DL (RINC-DL) and Constrained Incoherent DL (CINC-DL)

Algorithm 1 RINC-DL 1: Require: Y, \mathbf{D}_0 , τ , λ , c, L_2 , ϵ , I, J2: Initialization: $D = D_0$, G = 03: while stopping criterion for DL not met do **1.** Sparse approximation: $\mathbf{X} = SD(\mathbf{Y}, \mathbf{D}, \tau)$ 4: 2. Dictionary update: 5: $L_1 = \|\mathbf{X}^T \mathbf{X}\|$ 6: $\alpha = 3 \cdot \|\mathbf{D}^T \mathbf{D} - \mathbf{I}\|_{\infty}$ 7: i = 18: while $i \leq I$ and $\|\mathbf{G} - \mathbf{D}^T \mathbf{D}\|_F > \epsilon$ do Q٠ $\mu_d = 1/(L_1 + \alpha^{-1}L_2)$ 10. for $j = 1, 2, \dots, J$ do 11: $\mathbf{G} = \mathbf{D}^T \mathbf{D} - P_{\mathcal{B}^{\lambda \cdot \alpha}} (\mathbf{D}^T \mathbf{D} - \mathbf{I})$ 12: $\mathbf{G} = \mathbf{I} + P_{\mathcal{B}_{\infty}^{\mu_0}}(\mathbf{D}^T \mathbf{D} - \mathbf{I}) \qquad \overline{\text{CINC-DL}}$ $\mathbf{D} = P_{\mathcal{D}}(\mathbf{D} - \mu_d \nabla f(\mathbf{D}))$ 13: end for $14 \cdot$ 15 $\alpha \leftarrow c \cdot \alpha$ 16: $i \leftarrow i + 1$ 17: end while 18: end while 19: Output: D. X

▲ @ ▶ < ∃ ▶ <</p>

Regularized Incoherent DL (RINC-DL) and Constrained Incoherent DL (CINC-DL)

Algorithm 1 RINC-DL					
1: Require: Y, D ₀ , τ , λ , c , L_2 , ϵ , I , J					
2: Initialization: $\mathbf{D} = \mathbf{D}_0, \ \mathbf{G} = 0$					
3: while stopping criterion for DL not met do					
4: 1. Sparse approximation: $\mathbf{X} = SD(\mathbf{Y}, \mathbf{D}, \tau)$					
5: 2. Dictionary update:					
$6: L_1 = \ \mathbf{X}^T \mathbf{X}\ $					
7: $\alpha = 3 \cdot \ \mathbf{D}^T \mathbf{D} - \mathbf{I}\ _{\infty}$					
8: <i>i</i> = 1					
9. while $i \leq I$ and $\ \mathbf{G} - \mathbf{D}^T \mathbf{D}\ _F > \epsilon$ do					
10: $\mu_d = 1/(L_1 + \alpha^{-1}L_2)$					
11: for $j = 1, 2, \dots, J$ do					
12: $\mathbf{G} = \mathbf{D}^T \mathbf{D} - P_{\mathcal{B}_1^{\lambda \cdot \alpha}} (\mathbf{D}^T \mathbf{D} - \mathbf{I})$					
$\mathbf{G} = \mathbf{I} + P_{\mathcal{B}_{\infty}^{\mu_0}}(\mathbf{D}^T \mathbf{D} - \mathbf{I}) \qquad \overline{\text{CINC-DL}}$					
13: $ \mathbf{D} = P_{\mathcal{D}}(\mathbf{D} - \mu_d \nabla f(\mathbf{D}))$					
14: end for					
15: $\alpha \leftarrow c \cdot \alpha$					
16: $i \leftarrow i+1$					
17: end while					
18: end while					
19: Output: D , X					

Algorithm	Complexity
IPR-DL CINC-DL RINC-DL	$\begin{array}{c} \mathcal{O}(nNM+MN^2+3n^2N+2n^3+2N^3)\\ \mathcal{O}(nNM+nN^2)\\ \mathcal{O}(nNM+nN^2) \end{array}$

- *n* : signal dimension
- $\bullet \ N: {\rm number \ of \ atoms}$
- *M* : number of training signals
Simulations

Low-coherence DL for 8×8 image blocks: M = 50,000, $\mathbf{D}_0 = \mathsf{DCT}_{64 \times 256}$ $(\mu_{\min} = 0.1085), s = 10.$

Mostafa Sadeghi (m.saadeghii@Gmail)

Sparsity, Dictionary Learning, and DNN

Proximal algorithms

- 2 Sparse representation
- 3 Dictionary Learning

4 Deep Neural Networks

- Background
- Progressive Neural Networks
- Structured Weight Matrices for Neural Networks

・ロト ・四ト ・ヨト ・ヨト

12

5 Conclusions

Estimate the mapping function $\mathbf{t} = f(\mathbf{x})$ given some training data $\{(\mathbf{x}_i, \mathbf{t}_i)\}_i$

Single layer NN:

 $\hat{\mathbf{t}} = \mathbf{W}_2 \cdot g(\mathbf{W}_1 \cdot \mathbf{x})$

g: non-linear activation function

It can approximate any continuous function under mild conditions (universal approximation)

- To approximate complex functions, increase the number of hidden nodes
- Leads to very wide networks!

Solution: Deepen the network instead of widening it!

Multilayer NN:

Training algorithms:

$$\min_{\mathbf{W}_1,\mathbf{W}_2} \frac{1}{M} \sum_{i=1}^M \|\mathbf{t}_i - \mathbf{W}_2 \cdot g(\mathbf{W}_1 \cdot \mathbf{x}_i)\|_2^2$$

- Stochastic Gradient Descent (SGD) Backpropagation
- Gradient-free training using ADMM [Taylor et al. 2016]
- Proximal backpropagation [Frerix et al. 2017]
- Extreme learning machine (ELM) [Huang et al. 2006]:

Set \mathbf{W}_1 randomly Find \mathbf{W}_2 using least squares: $\min_{\mathbf{W}_2} \frac{1}{M} \sum_{i=1}^M \|\mathbf{t}_i - \mathbf{W}_2 \cdot g(\mathbf{W}_1 \cdot \mathbf{x}_i)\|_2^2$

Dictionary Learning and Neural Networks

Dictionary learning has some similarities with single-layer NN:

• DL:
$$\min_{\mathbf{D}, \mathbf{X}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \text{ s.t. } \mathbf{X} \text{ is sparse}$$

• SNN::
$$\min_{\mathbf{W}_1, \mathbf{W}_2} \|\mathbf{T} - \mathbf{W}_2 \cdot g(\mathbf{W}_1 \cdot \mathbf{X})\|_F^2$$

More explicit connections between DL (dictionary learning) and DL (deep learning):

- V. Papyan, Y. Romano, J. Sulam, and M. Elad, "Theoretical Foundations of Deep Learning via Sparse Representations," to appear in *IEEE Signal Processing Magazine*.
- J. Sulam, V. Papyan, Y. Romano, and M. Elad, "Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning," to appear in *IEEE Trans.* on Signal Processing.

From multi-layer convolutional sparse coding (CSC) to convolutional neural networks (CNNs)

Questions to address in a multilayer NN:

- How to choose number of layers in a network?
- How to choose number of nodes in each layer?
- How to guarantee that increase in size results in better (non-increasing) optimized cost for training data?
- How to design with appropriate regularization of network parameters to avoid over-fitting to training data?
- Can we use random weight matrices to keep the number of parameters to learn in balance?

Proximal algorithms

- 2 Sparse representation
- 3 Dictionary Learning

Deep Neural Networks

- Background
- Progressive Neural Networks
- Structured Weight Matrices for Neural Networks

Conclusions

Progression Learning Network

Definition (Progression Property)

а

A non-linear g(.) function holds the progression property (PP) if there are two known linear transformations $\mathbf{V} \in \mathbb{R}^{M \times N}$ and $\mathbf{U} \in \mathbb{R}^{N \times M}$ such that $\forall \boldsymbol{\gamma} \in \mathbb{R}^{Na}$:

$$\mathbf{Ug}(\mathbf{V} \boldsymbol{\gamma}) = \boldsymbol{\gamma}$$

S. Chatterjee, A. M. Javid, M. Sadeghi, P. P. Mitra and M. Skoglund, "Progressive learning for systematic design of large neural networks", *IEEE Trans. Neural Networks and Learning Systems*, 2017 (submitted).

• Example: The rectified linear unit (ReLU) function [Glorot et al. 2011]

$$g(\gamma) = \max(\gamma, 0) = \begin{cases} \gamma, \text{ if } \gamma \ge 0\\ 0, \text{ if } \gamma < 0. \end{cases}$$

If $\mathbf{V} \triangleq \mathbf{V}_N = [\mathbf{I}_N, -\mathbf{I}_N]^T \in \mathbb{R}^{2N \times N}$ and $\mathbf{U} \triangleq \mathbf{U}_N = [\mathbf{I}_N - \mathbf{I}_N] \in \mathbb{R}^{N \times 2N}$ then ReLU holds PP. Here \mathbf{I}_N denotes identity matrix of size N (M = 2N).

Single layer PLN

- $\tilde{\mathbf{t}} = \mathbf{O}_1 \, \mathbf{g}(\mathbf{W}_1 \mathbf{x})$
- $\bullet \ {\bf R}_1 \text{ is a random matrix}$

June 2018 34 / 48

Single layer PLN

•
$$\mathbf{W}_{ls}^{\star} = \underset{\mathbf{W}_{ls}}{\operatorname{arg\,min}} \sum_{j} \|\mathbf{t}^{(j)} - \mathbf{W}_{ls}\mathbf{x}^{(j)}\|_{p}^{p} \text{ s.t. } \|\mathbf{W}_{ls}\|_{q}^{q} \leq \epsilon$$

• $\mathbf{O}_{1}^{\star} = \underset{\mathbf{O}_{1}}{\operatorname{arg\,min}} \sum_{j} \|\mathbf{t}^{(j)} - \mathbf{O}_{1}\mathbf{y}_{1}^{(j)}\|_{p}^{p} \text{ such that } \|\mathbf{O}_{1}\|_{q}^{q} \leq \alpha \|\mathbf{U}_{Q}\|_{q}^{q},$
 $C_{ls}^{\star} \triangleq C(\mathbf{W}_{ls}^{\star}) = \sum_{j} \|\mathbf{t}^{(j)} - \mathbf{W}_{ls}^{\star}\mathbf{x}^{(j)}\|_{p}^{p}$
 $C_{1}^{\star} = C(\mathbf{O}_{1}^{\star}) = \sum_{j} \|\mathbf{t}^{(j)} - \mathbf{O}_{1}^{\star}\mathbf{y}_{1}^{(j)}\|_{p}^{p} = \sum_{j} \|\mathbf{t}^{(j)} - \mathbf{O}_{1}^{\star}\mathbf{g}(\mathbf{W}_{1}\mathbf{x}^{(j)})\|_{p}^{p}$

Relation between optimal linear system and single layer PLN costs: $C_1^{\star} \leq C_{ls}^{\star}$. At the equality condition: $\mathbf{O}_1^{\star} = [\mathbf{U}_Q \mathbf{0}]$

 ${}^{\Join}$ Adding nodes to the layer: $C_1^\star(n_1+\Delta) \leq C_1^\star(n_1)$

イロト 不得下 イヨト イヨト

< 一型

•
$$\mathbf{O}_l^{\star} = \underset{\mathbf{O}_l}{\operatorname{arg\,min}} \sum_j \|\mathbf{t}^{(j)} - \mathbf{O}_l \mathbf{y}_l^{(j)}\|_p^p$$
 such that $\|\mathbf{O}_l\|_q^q \le \alpha \|\mathbf{U}_Q\|_q^q$,

•
$$C_l^{\star} = C(\mathbf{O}_l^{\star}) = \sum_j \|\mathbf{t}^{(j)} - \mathbf{O}_l^{\star} \mathbf{y}_l^{(j)}\|_p^p$$

Proposition (Small approximation error)

Using PP and under the technical condition $\forall l$, $\mathbf{O}_{l}^{\star} \neq [\mathbf{U}_{Q} \mathbf{0}]$ where $\mathbf{0}$ denotes a zero matrix of size $Q \times (n_{l} - 2Q)$, the optimized cost is monotonically decreasing with increase in number of layers, that is $C_{l}^{\star} < C_{l-1}^{\star}$. For a large number of layers, that means when $l \to \infty$, we have $C_{l}^{\star} \leq \kappa$ where κ is an arbitrarily small non-negative real scalar.

If we increase Δ nodes (random nodes) in the *l*'th layer then we have $C_l^{\star}(n_l + \Delta) \leq C_l^{\star}(n_l)$

Simulation results

Classification:

Dataset	Regularized LS				Regularized ELM				PLN			
	Training	Testing	Test	Training	Training	Testing	Test	Training	Training	Testing	Test	Training
	NME	NME	Accuracy	Time(s)	NME	NME	Accuracy	Time(s)	NME	NME	Accuracy	Time(s)
Vowel	-1.06	-0.81	28.1 ± 0.0	0.0035	-6.083	-1.49	53.8 ± 1.7	0.0549	-72.54	-2.21	60.2 ± 2.4	1.2049
Extended YaleB	-7.51	-4.34	96.9 ± 0.6	0.0194	-12.75	-6.39	97.8 ± 0.5	0.3908	-49.97	-12.0	97.7 ± 0.5	2.5776
AR	-3.82	-1.82	96.1 ± 0.6	0.0297	-9.019	-2.10	97.2 ± 0.7	0.5150	-35.53	-7.69	97.6 ± 0.6	4.0691
Satimage	-2.82	-2.73	68.1 ± 0.0	0.0173	-7.614	-5.22	84.6 ± 0.5	0.8291	-11.73	-7.92	89.9 ± 0.5	1.4825
Scene15	-8.68	-5.03	99.1 ± 0.2	0.6409	-7.821	-5.78	97.6 ± 0.3	2.7224	-42.94	-14.7	99.1 ± 0.3	4.1209
Caltech101	-3.22	-1.29	66.3 ± 0.6	1.1756	-4.784	-1.21	63.4 ± 0.8	8.1560	-14.66	-4.13	76.1 ± 0.8	5.3712
Letter	-1.00	-0.99	55.0 ± 0.8	0.0518	-9.217	-6.29	95.7 ± 0.2	20.987	-18.60	-11.5	95.7 ± 0.2	12.926
NORB	-2.47	-1.54	80.4 ± 0.0	1.7879	-15.97	-6.77	89.8 ± 0.5	23.207	-13.39	-6.90	86.1 ± 0.2	10.507
Shuttle	-6.17	-6.31	89.2 ± 0.0	0.1332	-18.31	-12.2	99.6 ± 0.1	1.8940	-26.26	-25.0	99.8 ± 0.1	4.6345
MNIST	-4.07	-4.04	85.3 ± 0.0	0.8122	-9.092	-8.46	96.9 ± 0.1	27.298	-11.42	-10.9	95.7 ± 0.1	14.181
CIFAR-10	-1.33	-1.33	50.3 ± 0.0	10.753	-2.004	-2.01	60.3 ± 0.3	53.842				
CIFAR-100	-0.20	-0.13	14.9 ± 0.0	12.883								

* The vowel database is for vowel recognition task (a speech recognition application) and all other databases are for image classification (computer vision applications).

Simulation results

NME and accuracy versus number of nodes for the "Letter" dataset with 8-layer PLN:

June 2018 40 / 48

Image: Image:

- ₹ 🗦 🕨

Proximal algorithms

- 2 Sparse representation
- 3 Dictionary Learning

Deep Neural Networks

- Background
- Progressive Neural Networks
- Structured Weight Matrices for Neural Networks

(日) (四) (문) (문) (문)

Conclusions

Background

Deep networks create deep trouble!

- Deep neural networks have many layers and nodes, with hundreds of millions of parameters → hundreds of megabytes for storage
- Needs more storage and computational resources
- Limiting their application in real-time tasks, and smart phones/ wearable devices

Background

Solutions [see Cheng et al., 2018]:

- Parameter pruning and sharing: Reducing redundant parameters that are not sensitive to the performance, using e.g. pruning weak connections, network quantization
- Low-rank factorization: Using matrix/tensor decomposition to estimate the informative parameters
- Transferred/compact convolutional filters: Designing special structural convolutional filters to save parameters

Motivation:

Weight vectors and filters corresponding to each node in a neural network exhibit some structure. So, they can be written as sparse linear combinations of e.g. DCT atoms.

Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained AlexNet. http://cs231n.github.io/understanding-cnn/

Let
$$\mathbf{w}_{\ell}$$
 be a row of \mathbf{W}_{ℓ} . Then, $\mathbf{w}_{\ell} = \mathbf{s}_{\ell} \Phi = \sum_{i} s_{\ell}^{i} \cdot \phi_{i}$ and \mathbf{s}_{ℓ} is sparse.

Using sparse representation

$$\mathbf{W}_\ell = \mathbf{S}_\ell \mathbf{\Phi}$$

- Φ is a complete (i.e., square matrix) like DCT for images or Gabor dictionary for speech data
- \mathbf{S}_ℓ is a matrix with sparse rows

Advantages:

- \blacksquare Low memory consumption, as \mathbf{S}_ℓ 's are sparse and the basis Φ is shared among all the layers
- $\textcircled{0} Low computational complexity due to the sparseness of S_ℓ's and that the multiplications with Φ can be done very efficiently for particular transforms like DCT and Fourier$
- Operation of the second sec
- 9 Efficient training: SGD + projection

Another sparse structure:

$$\mathbf{W}_\ell = \mathbf{S}_\ell^1 \cdot \mathbf{S}_\ell^2$$

- \bullet Both factors \mathbf{S}^1_ℓ and \mathbf{S}^2_ℓ are sparse matrices
- Sparsity is global not row-wise

Again, training is easy: SGD (via backpropagation) + projection

Simulation results

Test accuracy vs the percentage of non-zeros in each row of S for a 3-layer structure: $\mathbf{W}_{\ell} = \mathbf{S}_{\ell} \mathbf{\Phi}$

Simulation results

Overfitting effect: $MNIST(50,000 \rightarrow 10,000 \text{ training samples})$

Receptive fields:

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dict

Proximal algorithms

- 2 Sparse representation
- Oictionary Learning
- 4 Deep Neural Networks

Conclusions

- New algorithms were proposed for sparse recovery and dictionary learning problems based on penalty and ADMM methods combined with proximal algorithms
- The proposed sparse recovery algorithms gave new insights into some previous algorithms like SL0
- Inspired by a progression property, we develop progressive neural networks to learn architecture of neural networks
- Structured weight matrices were proposed using sparse representation to save memory and computation in deep networks

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで