Fast and Efficient Speech Enhancement with Variational Autoencoders

Mostafa Sadeghi, Romain Serizel

Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France

2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023)

June 04-10, Rhodes island, Greece.

Introduction

Speech Enhancement

Short-time Fourier transform (STFT) representation:

• $\mathbf{x} = {\{\mathbf{x}_t\}_{t=1}^T}$ (similarly for s and n).

Given noisy speech observation $\mathbf{x} = \mathbf{s} + \mathbf{n}$, estimate the clean speech signal, s.

\triangleright Supervised (discriminative): Model $p_{\Theta}(\mathbf{s}|\mathbf{x})$, and learn Θ

- Train a deep neural network (DNN) on pairs of noisy-clean data $\{\mathbf{x}_i, \mathbf{s}_i\}.$
- Implicit prior modeling $p_{\theta}(s)$ via inductive biases (architecture, optimizer, etc.).

Unsupervised (generative): Speech enhancement <u>without</u> training on noise.

$$\mathsf{Model} \ p_{\Theta}(\mathbf{s}|\mathbf{x}) \propto \underbrace{p_{\psi}(\mathbf{x}|\mathbf{s})}_{\mathsf{Inference}} \cdot \underbrace{p_{\theta}(\mathbf{s})}_{\mathsf{Training}}, \text{ and learn } \Theta = \theta \cup \psi:$$

- Training Learn speech's prior distribution $p_{\theta}(\mathbf{s})$
- Inference Model $p_{\psi}(\mathbf{x}|\mathbf{s})$, and infer \mathbf{s} using $p_{\theta}(\mathbf{s})$

^{III} We focus on *unsupervised SE* approaches.

How to learn speech's prior distribution?

- Latent variable generative models: Variational autoencoder (VAE),¹ Normalizing Flow (NF),² etc.
- Score-based generative models:³ Learn the score function $\nabla_{\mathbf{s}} \log p_{\theta}(\mathbf{s})$.

We focus on VAE:

$$p_{\theta}(\mathbf{s}) = \int p_{\theta}(\mathbf{s}|\mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$$

• $\mathbf{z} = {\mathbf{z}_t \in \mathbb{R}^L}$: (real-valued, low-dimensional, $L \ll F$) latent variables

¹D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," ICLR, 2014.

²D. Rezende, D. Mohamed, "Variational inference with normalizing flows," ICML, 2015.

 $^{^3}$ Y. Song, S. Ermon, "Generative modeling by estimating gradients of the data distribution," NeurIPS, 2019

VAE-based speech modeling

A Gaussian generative model $(\forall t)$:⁴

$$\begin{cases} p_{\theta}(\boldsymbol{s}_t | \boldsymbol{z}_t) = \mathcal{N}_c \Big(\boldsymbol{0}, \mathsf{diag}(\boldsymbol{\sigma}_{\theta}(\boldsymbol{z}_t)) \Big), \\ p_{\theta}(\boldsymbol{z}_t) = \mathcal{N}(\boldsymbol{0}, \mathbf{I}) \end{cases} \quad \boldsymbol{\sigma}_{\theta}(.) : \mathsf{a} \text{ neural network } (\textit{decoder}) \end{cases}$$

Need to maximize $\log p_{\theta}(s)$, which is intractable. However:

$$\log p_{\theta}(\mathbf{s}) = \log \int p_{\theta}(\mathbf{s}|\mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z} \geq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{s})} \left[\log \frac{p_{\theta}(\mathbf{s}|\mathbf{z}) p_{\theta}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{s})} \right] \triangleq \mathcal{L}\left(\theta, \phi\right)$$

▷ Reparametrization trick + Adam optimizer⁵

⁴S. Leglaive *et al.* "A variance modeling framework based on variational autoencoders for speech enhancement," MLSP, 2018.
⁵D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," ICLR, 2014.

Speech Enhancement

Observation model:
$$\forall t: \quad | \boldsymbol{x}_t = \boldsymbol{s}_t + \boldsymbol{n}_t |$$

Noise model: Non-negative Matrix Factorization (NMF)

$$\forall t: \quad \boldsymbol{n}_t \sim \mathcal{N}_c \left(\boldsymbol{0}, \mathsf{diag}(\mathbf{W}\mathbf{H}[:, t]) \right), \quad \mathbf{W}, \mathbf{H} \geq 0$$

Clean speech model: Trained generative (decoder) network.

Solution We describe the parameters $\psi = {\mathbf{W}, \mathbf{H}}.$

Expectation-Maximization (EM):

$$\psi^* = \underset{\psi}{\operatorname{argmax}} \quad \sum_{t=1}^T \mathbb{E}_{p_{\phi}(\boldsymbol{z}_t | \boldsymbol{x}_t)} \{ \log p_{\psi}(\boldsymbol{x}_t, \boldsymbol{z}_t) \} = \underset{\psi}{\operatorname{argmax}} \quad \sum_{t=1}^T \mathbb{E}_{p_{\psi}(\boldsymbol{z}_t | \boldsymbol{x}_t)} \{ \log p_{\psi}(\boldsymbol{x}_t | \boldsymbol{z}_t) \}$$

Intractable expectation (E-step). Approximate solutions:

- Monte Carlo EM (MCEM)⁶: Sample from $p_{\psi}(\mathbf{z}|\mathbf{x}) \propto p_{\psi}(\mathbf{x}|\mathbf{z})p(\mathbf{z})$.
- Variational EM (VEM)⁷: Fine-tune the learned encoder, $q_{\psi}(\mathbf{z}|\mathbf{s})$, on \mathbf{x} :

$$p_{\psi}(\mathbf{z}|\mathbf{x}) \approx q_{\psi}(\mathbf{z}|\mathbf{x})$$

• Point Estimate EM (PEEM)⁷: Find only the mode of $p_{\psi}(\mathbf{z}|\mathbf{x})$.

Once ψ is learned, $\hat{\mathbf{s}} = \mathbb{E}_{p_{y|y} * (\mathbf{s}|\mathbf{x})} \{\mathbf{s}\}.$

⁶S. Leglaive *et al.* "A variance modeling framework based on variational autoencoders for speech enhancement," MLSP, 2018.

⁷S. Leglaive *et al.* "A recurrent variational autoencoder for speech enhancement," ICASSP, 2020.

Langevin Dynamics Expectation Maximization (LDEM)

Lack of a good trade-off between complexity & performance:

Method	Complexity	Performance				
MCEM	High	High				
VEM	High	High				
PEEM	Low	Low				

- We develop Langevin dynamics EM (LDEM).
- Sampling by taking gradient steps on log posterior + noise injection.
- Total variation (TV) regularization on the latent vectors.
- LDEM makes an effective compromise between complexity & performance.

Stochastic Gradient LD:⁸

Sample from $p_{\phi}(\boldsymbol{z}_t | \boldsymbol{x}_t)$ using the score function:

$$f(\boldsymbol{z}_t) = \nabla \boldsymbol{z}_t \log p_{\phi}(\boldsymbol{z}_t | \boldsymbol{x}_t) = \nabla \boldsymbol{z}_t \left(\log p_{\phi}(\boldsymbol{x}_t | \boldsymbol{z}_t) + \log p(\boldsymbol{z}_t) \right)$$

Given an initial state $z_t^{(0)}$, the next states (samples) are $(k \ge 0)$:

$$\boldsymbol{z}_{t}^{(k)} = \boldsymbol{z}_{t}^{(k-1)} + \frac{\eta}{2} f(\boldsymbol{z}_{t}^{(k-1)}) + \sqrt{\eta} \boldsymbol{\zeta} \qquad \boldsymbol{\zeta} \sim \mathcal{N}(0, \boldsymbol{I}), \ \eta > 0,$$

- Noise injection for better exploration of high-density regions.
- When $k \to \infty$ and $\eta \to 0$, then $\boldsymbol{z}_t^{(k)} \sim p_{\phi}(\boldsymbol{z}_t | \boldsymbol{x}_t)$.

 $^{^{8}}$ M. Welling and Y. W. Teh, "Bayesian learning via stochastic gradient langevin dynamics," ICML, 2011.

 \triangleright Starting from $\boldsymbol{z} = \{\boldsymbol{z}_1, \cdots, \boldsymbol{z}_T\}$, draw m different states $\boldsymbol{z}_{t,1}, \cdots, \boldsymbol{z}_{t,m}$ per \boldsymbol{z}_t :

$$\boldsymbol{z}_{t,i} | \boldsymbol{z}_t \sim \mathcal{N}(\boldsymbol{z}_t, \sigma^2 \boldsymbol{I}), \quad \forall t, i$$

or

$$\boldsymbol{z}_{t,i} = \boldsymbol{z}_t + \sigma \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})$$

A random walk as a second source of stochasticity.

 \triangleright A *TV regularization* to incorporate time dependencies of $\{z_1, \cdots, z_T\}$:

$$f_{\lambda}(\boldsymbol{z}) = \nabla_{\boldsymbol{z}} \Big(\sum_{t=1}^{T} g(\boldsymbol{z}_t) + \lambda \sum_{t=2}^{T} \|\boldsymbol{z}_t - \boldsymbol{z}_{t-1}\|_1 \Big)$$

LDEM: Extended version

Algorithm 1 LD

1: Require: $\bar{\mathbf{z}}^{(0)} = \left\{ \mathbf{z}_{t,i}^{(0)} \right\}_{t,i}$, K (sampling steps), η (step-size). 2: for $k = 1, \dots, K$ do 3: $\boldsymbol{\zeta} = \left\{ \boldsymbol{\zeta}_{t,i} \right\}_{t,i}$, with $\boldsymbol{\zeta}_{t,i} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\bar{\mathbf{z}}^{(k)} = \bar{\mathbf{z}}^{(k-1)} + \frac{\eta}{2} f_{\lambda}(\bar{\mathbf{z}}^{(k-1)}) + \sqrt{\eta} \boldsymbol{\zeta}$, 5: end for 6: Output: $\bar{\mathbf{z}}^{(K)} = \left\{ \mathbf{z}_{t,i}^{(K)} \right\}_{t,i}$

Algorithm 2 LDEM

1: Require: $\mathbf{x} = \{\mathbf{x}_t\}_{t=1}^{\tilde{T}}, f_{\lambda}, \sigma, K, \eta, m, J$ (EM iterations). 2: Initialize: $\mathbf{z}, \mathbf{W}, \mathbf{H}$. 3: for $j = 1, \dots, J$ do 4: $\mathbf{z}_{t,i} = \mathbf{z}_t + \sigma \epsilon_{t,i}$, with $\epsilon_{t,i} \sim \mathcal{N}(0, \mathbf{I}), \forall t, i$ 5: $\{\mathbf{z}_{t,i}\}_{t,i} \leftarrow \text{LD}(\{\mathbf{z}_{t,i}\}_{t,i})$ 6: $\phi \leftarrow \operatorname{argmax}_{\phi} \sum_{t,i} \log p_{\phi}(\mathbf{x}_t | \mathbf{z}_{t,i})$ 7: end for 8: Output: $\phi = \{\mathbf{W}, \mathbf{H}\}$

Experiments

- ▷ NTCD-TIMIT dataset⁹: Extended version of TCD-TIMIT to noisy speech data.
 - \triangleright Training set (\sim 5 hours): 39 speakers \times 98 sentences \times 5 seconds
 - \triangleright Test set (~ 1 hour): 9 speakers \times 98 sentences \times 5 seconds
 - \triangleright Noise levels: -10 dB, -5 dB, 0 dB, and 5 dB
 - ▷ Noise types: Living Room (LR), White, Cafe, Car, Babble, and Street
- ▷ STFT: 1024 sample-long (64 ms) sine window, 75% overlap, no zero-padding
- Baselines: MCEM, PEEM, VEM (public implementation did not work)

⁹A.-H. Abdelaziz, "NTCD-TIMIT: A new database and baseline for noise-robust audio-visual speech recognition," INTERSPEECH, 2017.

Setup

▷ VAE architecture:

- Single-layer, 128-node, encoder and decoder,
- Hyperbolic tangent activation function,
- Latent space's dimension: L = 32.

▷ EM parameters:

- Number of EM iterations: J = 100,
- Number of E-step iterations: K = 10,
- Learning rate for PEEM & LDEM: $\eta=0.005,$
- Noise variance for LDEM: $\sigma^2 = 0.01$.

Results

Objective measures (the higher, the better)

- Signal-to-distortion ratio (SDR).
- Perceptual evaluation of speech quality (PESQ).
- Short-time objective intelligibility (STOI).

Metric	SI-SDR (dB)			PESQ				STOI							
Noise SNR (dB)	-10	-5	0	5	10	-10	-5	0	5	10	-10	-5	0	5	10
Input (unprocessed)	-18.08	-12.80	-7.72	-2.91	2.04	1.40	1.51	1.76	2.05	2.37	0.12	0.20	0.30	0.43	0.56
PEEM	-9.66	-4.35	0.57	5.49	10.33	1.60	1.80	2.06	2.36	2.67	0.15	0.24	0.36	0.49	0.63
MCEM	-7.67	-1.48	3.34	7.81	12.00	1.55	1.84	2.18	2.49	2.78	0.17	0.27	0.40	0.54	0.66
LDEM $(\lambda : 0, m : 1)$	-7.20	-1.03	3.76	8.18	12.37	1.54	1.85	2.18	2.50	2.78	0.16	0.25	0.38	0.52	0.65
LDEM ($\lambda : 0.5, m : 1$)	-7.17	-1.08	3.70	8.16	12.34	1.58	1.87	2.20	2.51	2.80	0.17	0.27	0.40	0.53	0.66
LDEM ($\lambda : 5, m : 1$)	-7.28	-1.41	3.42	7.93	12.13	1.70	1.96	2.25	2.56	2.83	0.17	0.27	0.40	0.53	0.66
LDEM $(\lambda : 5, m : 5)$	-7.10	-1.26	3.60	8.07	12.27	1.73	2.01	2.30	2.59	2.85	0.17	0.27	0.40	0.54	0.67

Average runtimes (in seconds) per test sample (\sim 5-second long)

Method	PEEM	MCEM	LDEM (m : 1)	LDEM (m : 5)		
runtime	runtime 5		5.4	18		

- We addressed the computationally demanding EM step of VAE-based speech enhancement.
- Existing methods suffer from high computational complexity or low performance.
- We proposed Langevin dynamics EM (LDEM) as sampling-based method that effectively compromises the complexity and quality.
- Experimental results showed that LDEM outperforms previous sampling-based approaches.

Thank you for your attention!