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Overview

• We address unsupervised speech enhancement (SE) using
a recurrent variational autoencoder (VAE) generative model.

• Inference’s bottleneck: high complexity of the iterative
variational expectation-maximization (VEM) process.

• We propose efficient sampling-based inference methods
leveraging Langevin dynamics and Metropolis-Hasting algorithms.

• The proposed sampling techniques are shown to improve over the
VEM in speed and performance significantly.

Unsupervised speech enhancement

Separate the speech and noise signals without training on noise.

Short-time Fourier transform (STFT) domain: x = s + b

• s → clean speech signal with prior pθ(s)
• b → noise signal with prior pψ(b)

Training: Learn a parametric prior pθ(s)
Testing: Estimate s using pψ(s|x) ∝ pψ(x|s) × pθ(s)

Training: learning speech prior

Recurrent VAE (RVAE)-based speech generative model [1]:

pθ(s) =
∫
pθ(s|z)p(z)dz, p(z) ∼ N (0, I)

 decoderencoder

▷ Learn encoder-decoder parameters over clean speech data.

Testing: speech enhancement

Non-negative matrix factorization (NMF)-based noise model:

pψ(b) ∼ Nc (0, diag(vec(WH))) , ψ = {W,H}

Parameter inference: Variational expectation-maximization (VEM)

• E-step: compute posterior pψ(z|x) (Intractable!)
• M-step: update parameters:

max
ψ

Epψ(z|x){log pψ(x|z)}

multiplicative update rules

VEM-based inference

Computational bottleneck due to the intractable posterior during the E-step.

▷ VEM approach: fine-tune the pre-trained encoder on x [1]
encoder

Sample from the fine-tuned encoder and estimate the expectation with a Monte-Carlo average.

✗ Computationally expensive, especially when the encoder has high number of parameters.

Proposed solutions: efficient sampling methods

• Direct sampling from the intractable posterior pψ(z|x) in the E-step
• Fast and efficient samplers based on zero/first-order optimization
Assume s = (s1, · · · , sT ) (STFT time-frames) and associated z = (z1, · · · , zT ).

Metropolis-Hastings (MH): Iterative Markov chain Monte Carlo (MCMC) sampling.
• Candidate next samples:

z̃(k)
t |z(k−1)

t ∼ N (z(k−1)
t , σ2I), ∀t

• Accept the new samples with the following probability (relative posteriors):

αt = min
(

1, pψ(xt|z̃(k))p(z̃(k)
t )

pψ(xt|z(k−1))p(z(k−1)
t )

)

Langevin dynamics (LD): Needs only ∇z log pψ(z|x) (score function) for sampling.

fψ(z) = ∇z log pψ(z|x) = ∇z

 T∑
t=1

log pψ(xt|z) + log p(zt)


• Multiple samples per time-frame:
z(0)
t,i |zt ∼ N (zt, σ2I), t = 1, . . . , T, i = 1, . . .M

• Next samples via LD:
z(k)
t,i |z(k−1) ∼ N (z(k−1)

t,i +η
2
fψ(z(k−1)), ηI)

Gradient ascent steps on score function + noise injection to better explore posterior space.

No acceptance/rejection mechanism, unlike MH.

Metropolis-Adjusted Langevin Algorithm (MALA):
Add an acceptance/rejection mechanism to LD.
• Candidate next samples:

z̃(k)
t |z(k−1)

t ∼ N (z(k−1)
t + η

2
fψ(z(k−1)

t ), ηI)

• Accept or reject the new samples:

αt = min
(

1, pψ(xt|z̃(k))p(z̃(k)
t )q(z(k)|z̃(k))

pψ(xt|z(k−1))p(z(k−1)
t )q(z̃(k)|z(k))

)
where q(u|v) is the transition probability density from v to u:

q(u|v) ∝ exp
(

− 1
2η

∥u − v − η

2
f (v)∥2

)
Unlike MH, MALA tends towards higher probability regions.

Experiments

• Datasets: WSJ0-QUT (training & evaluation) and TCD-TIMIT
(evaluation)

• Parameters: K = 1 (sampling iterations) for LDEM, while K = 10
for MHEM and MALAEM

• Baseline: Pre-trained RVAE [1] (unsupervised) and SGMSE+ [2]
(supervised).

Table 1: Speech enhancement performance metrics.
Metric SI-SDR (dB) PESQ ESTOI
Input (WSJ0-QUT) -2.60 ± 0.16 1.83 ± 0.02 0.50 ± 0.01

RVAE

VEM [1] 4.50 ± 0.21 2.21 ± 0.02 0.60 ± 0.01
MHEM 5.15 ± 0.20 2.24 ± 0.02 0.62 ± 0.01
MALAEM 5.52 ± 0.21 2.28 ± 0.02 0.62 ± 0.01
LDEM 5.58 ± 0.20 2.32 ± 0.02 0.63 ±0.01

SGMSE+ [2] 9.41 ± 0.18 2.66 ± 0.02 0.77 ± 0.01
Input (TCD-TIMIT) -8.74 ± 0.29 1.84 ± 0.02 0.35 ± 0.01

RVAE

VEM [1] 1.44 ± 0.30 2.02 ± 0.02 0.35 ± 0.01
MHEM 3.72 ± 0.27 2.12 ± 0.02 0.42 ± 0.01
MALAEM 4.49 ± 0.29 2.21 ± 0.02 0.42 ± 0.01
LDEM 4.18 ± 0.29 2.21 ± 0.02 0.42 ± 0.01

SGMSE+ [2] -3.97 ± 0.41 2.04 ± 0.02 0.38 ± 0.01

Table 2: RTF values (average processing time per 1-sec speech).

VEM MHEM MALAEM LDEM SGMSE+
12.55 ± 0.01 0.92 ± 0.01 2.49 ± 0.01 0.21 ± 0.01 3.85 ± 0.01

▷ Proposed methods surpass VEM in RVAE algorithms, especially in
mismatched conditions, showing better generalizability.
▷ LDEM consistently scores highest or near-highest in all metrics, under-
lining its effectiveness.
▷ SGMSE+ excels in matched conditions but lags in mismatched ones
(generalization issue of supervised methods).
▷ Proposed methods, especially LDEM, are much faster than VEM.
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