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Overview

o We address unsupervised speech enhancement (SE) using
a recurrent variational autoencoder (VAE) generative model.

e Inference’s bottleneck: high complexity of the iterative
variational expectation-maximization (VEM) process.

e We propose efficient sampling-based inference methods
leveraging Langevin dynamics and Metropolis-Hasting algorithms.

e The proposed sampling techniques are shown to improve over the
VEM in speed and performance significantly.

Unsupervised speech enhancement
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{ Separate the speech and noise signals without training on noise. }

Short-time Fourier transform (STFT) domain: = s + b

o s — clean speech signal with prior py(s)
* b — noise signal with prior py(b)

Training: Learn a parametric prior py(s)
lesting: Estimate s using py(s|x) o< py(x|s) X po(s)

Training: learning speech prior

Recurrent VAE (RVAE)-based speech generative model [1]:
p(s) = [p(s|2)p(z)dz, p(z) ~ N(0,T

q¢(2[s) Po(s|2)

> Learn encoder-decoder parameters over clean speech data.

Testing: speech enhancement

Non-negative matrix factorization (NIMF')-based noise model:

pu(b) ~ N (0, diag(vec(WH))), ¢ = {W, H}
Parameter inference: Variational expectation-maximization (VEM)

o E-step: compute posterior py(z|x) (Intractable!)
e M-step: update parameters:

max By, (zjx)log py(x|z)}

&= multiplicative update rules

> VEM approach: fine-tune the pre-trained encoder on x [1]
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VEM-based inference

Computational bottleneck due to the intractable posterior during the E-step.

Sample from the fine-tuned encoder and estimate the expectation with a Monte-Carlo average.

X Computationally expensive, especially when the encoder has high number of parameters.

Proposed solutions: efficient sampling methods

e Direct sampling from the intractable posterior p,(z|x) in the E-step

o Fast and efficient samplers based on zero/first-order optimization

Assume s = (s1, -+ ,s7) (STFT time-frames) and associated z = (zy,- - - , z7).

Metropolis-Hastings (MH): Iterative Markov chain Monte Carlo (MCMC) sampling.

e Candidate next samples:

2z ~ N (2T, o), e

o Accept the new samples with the following probability (relative posteriors):

py(x:|29)p(z,")) )

py(x/|20=D)p(z )

(; = Iin (1,
Langevin dynamics (LD): Needs only V,log py(z|x) (score function) for sampling.

fu(z) = Vylogpy(z|x) =V, (; log py(x¢|z) + logp(zt))

o Multiple samples per time-frame:
zgg)\zt ~N(zy,0d), t=1,....,T,i=1,...M

e Next samples via LD:

2120~ N (), )

&= Gradient ascent steps on score function + noise injection to better explore posterior space.

&= No acceptance/rejection mechanism, unlike MH.
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Metropolis-Adjusted Langevin Algorithm (MALA):

Add an acceptance/rejection mechanism to LD.
e Candidate next samples:
ng)|zgk—1) N N(ng_l) 4 gfw(zgk_l)), 771>
e Accept or reject the new samples:
pu(xi|2™)p(2," ) (2|2 ") )
(k
t

Py (x| 20 D)p(zs")q (20|20

where g(u|v) is the transition probability density from v to u:

g(ulv) ox exp (= -l —v = 7))

&= Unlike MH, MALA tends towards higher probability regions.

Experiments

(;y = Mmin (1,

e Datasets: WSJ0-QUT (training & evaluation) and TCD-TIMIT
(evaluation)

e Parameters: K =1 (sampling iterations) for LDEM, while K = 10
for MHEM and MALAEM

e Baseline: Pre-trained RVAE [1]| (unsupervised) and SGMSE+ [2]
(supervised).

Table 1: Speech enhancement performance metrics.

Metric SLSDR (dB)|  PESQ | ESTOI
[nput (WSJ0-QUT) -2.60 + 0.16 1.83 £ 0.02 0.50 £ 0.01
VEM [1] 450 £ 0.21 221 £0.02 1 0.60 = 0.01
RVAE NHEM 5.10 =2 0.20  2.24 == 0.02 1 0.62 = 0.01
MALAEM 5.02 = 0.21 228 =0.02 1 0.62 = 0.01
LDEM 0.08 = 0.20 | 2.32 = 0.02 | 0.63 =0.01
SGMSE+ [2] 9.41 + 0.18 12.66 = 0.02/0.77 £+ 0.01
Input (TCD—TIMIT) .74 +£0.291.84 £ 0.02 1 0.35 £ 0.01
VEM [1] 1.44 4+ 0.30 | 2.02 = 0.02 1 0.35 £ 0.01
RVAE NHEM 372+ 027212+ 0.02 0.42 £ 0.01
MALAEM 4.49 = 0.29 2.21 £ 0.02/0.42 = 0.01
LDEM 4.18 = 0.29 2.21 = 0.02/0.42 = 0.01
SGMSE+ [2] -3.97 £ 0411 2.04 £ 0.02  0.38 £ 0.01

Table 2: RTF values (average processing time per 1-sec speech).

VEM MHEM | MALAEM LDEM SGMSEA+
12.55 = 0.01/0.92 = 0.01/2.49 == 0.01 0.21 = 0.01 3.85 &= 0.01

> Proposed methods surpass VEM in RVAE algorithms, especially in
mismatched conditions, showing better generalizability.

> LDEM consistently scores highest or near-highest in all metrics, under-
lining its effectiveness.

> SGMSE~+ excels in matched conditions but lags in mismatched ones
(generalization issue of supervised methods).

> Proposed methods, especially LDEM, are much faster than VEM.
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