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Overview

• Structuring the latent space in variational autoencoders (VAEs) is
addressed.
• A simple yet effective sparsity-promoting dictionary model is

presented for the latent variables (SDM-VAE).
• The proposed methodology is tuning-free, relying on a zero-mean

Gaussian latent prior distribution with learnable variances.
• Experiments on speech generative modeling demonstrate the

advantage of the proposed approach over competing techniques.

Unsupervised representation learning

• Automatically extracting useful information from unlabeled data, in
the form of a feature or representation vector.
• Could be useful for various downstream tasks or for learning

distributions of data, e.g. using variational autoencoders (VAEs).
• To learn more efficient and interpretable representations, it’s

important to somehow impose some meaningful structures.
• One such powerful constraint is obtained through a sparsity

assumption.

We focus on sparsity promoting latent models for VAEs.

Background on VAEs

Generative modeling:
1 Let s = {s1, . . . , sN} denote a set of training data with si ∈ Rn.
2 Define the latent variables z = {z1, . . . , zN} with zi ∈ Rm, m≪ n.
3 Model the joint distribution p(s, z) = p(s|z) · p(z) as follows:



pθ(s|z) = N (µθ(z), diag(σ2
θ(z)),

p(z) = N (0, I),
(1)

• N (µ,Σ): Gaussian distribution with mean µ and covariance matrix Σ.
• I: the identity matrix of appropriate size.
• µθ(.) and σθ(.): non-linear functions implemented via some deep neural

networks (DNNs) with parameters θ.

Parameter estimation:
To learn θ, the intractable posterior pθ(z|s) is approximated with a para-
metric Gaussian distribution, which is called the encoder [1]:

qψ(z|s) = N (µψ(s), diag(σ2
ψ(s)), (2)

with µψ and σψ implemented by some DNNs with parameters ψ.

Using variational inference, maximize a lower bound of ln pθ(s):

L(Φ; s) = Eqψ(z|s)[log pθ(s|z)]−Dkl(qψ(z|s)∥p(z)), (3)

where Φ = {θ, ψ}, and DKL(. ∥ .) is the Kullback–Leibler divergence.

• Optimize L(Φ; s) over Φ using a gradient-based solver together with
the application of the reparametrization trick.

Structuring the latent space

The standard normal prior distribution is not effective, as it might not efficiently capture the underlying
distribution of the data. Several alternative distributions have been introduced that promote sparsity in the
latent space (increasing interpretability, reducing the risk of overfitting):
• Mixture of two Gaussian distributions with one having a very small variance [2].
• A Spike-and-Slab distribution for the prior & encoder [3].
• A deterministic dimension selector function that deactivates some dimensions of the latent vector [4].
These approaches though being effective, they often involve several user-defined hyperparameters and non-
Gaussian distributions or discrete latent variables, which complicates the learning process.

Proposed methodology: SDM-VAE

Main idea: A sparse dictionary model for each latent code zi as follows:
zi = Dai, ∀i, (4)

• D ∈ Rm×k: a (potentially overcomplete) dictionary with unit-norm columns.
• ai ∈ Rk: a sparse representation vector.

   DecoderEncoder =X

� Keeping the reconstruction quality intact, while promoting interpretability.
Sparsity-promoting prior:

p(ai; γi) = N (0, diag(γi)). (5)

• γi: a vector of learnable variances.

With an inverse Gamma hyperprior on γi in a Bayesian setting, the prior
p(ai) = ∫

p(ai|γi) · p(γi)dγi, (6)
becomes a Student’s t-distribution, which promotes sparsity due to its sharp peak at zero.

Inference

L(Φ,γ; s) = Eqψ(a|s)[log pθ(s|z)]−Dkl(qψ(a|s)∥p(a; γ)), with zi = Dai ∀i.

� Alternating minimization approach to update Φ and γ:
1 Update γ:

γ ← argmin
γ

Dkl(qψ(a|s)∥p(a; γ)) (7)

2 Update Φ:
Φ← arg max

Φ
L(Φ,γ; s) (8)

For γi, we obtain the following closed-form solution:

γi = Eqψ(ai|s)[a2
i ] = µ2

ψ(si) + σ2
ψ(si), ∀i. (9)

For Φ, we follow standard VAEs by approximating the expectation with a single sample & reparametrization:
ai = µψ(si) + σψ(si)⊙ ϵi then zi = Dai (ϵi ∼ N (0, I), ⊙: element-wise multiplication.). Then optimize

L̂(Φ,γ; s) = log pθ(s|z)−Dkl(qψ(a|s)∥p(a; γ)). (10)

Application to speech modeling

Speech analysis-resynthesis:
1 Short-time Fourier transform (STFT) of speech waveform →

complex-valued data x = {x1, . . . ,xN} (xi ∈ CF ).
2 Auto-encode power spectrogram s = |x|2 by the trained VAE.
3 Reconstruct original speech waveform using estimated power

spectrogram and the original phase.
4 Evaluate the reconstruction quality.
� A discrete cosine transform (DCT) matrix for D in SDM-VAE.

Experiments

• Corpus: TCD-TIMIT [5]: 56 English speakers (39 training, 8
validation, 9 test), 98 sentences (∼ 5 s) per speaker.
• STFT parameters: 64 ms sine window, 75% overlap → STFT

frames of length n = 513.
• Baselines: Standard VAE [6], and variational sparse coding (VSC)

[3].
• Model architecture: All the VAE models follow a simple

architecture with a single hidden layer in both encoder & decoder [6].
Performance measures: Perceptual evaluation of speech quality (PESQ)
[-0.5,4.5], Short-time objective intelligibility (STOI) [0,1], Hoyer metric
[0,1] for sparsity.

Table 1:Reconstruction quality and sparsity measure for various VAE-based methods in
terms of PESQ, STOI, and Hoyer scores.

Dimension of z m = 32 m = 64
PESQ STOI Hoyer PESQ STOI Hoyer

VAE 3.29 0.85 0.40 3.26 0.85 0.56

VSC

α = 0.05 3.00 0.81 0.57 3.25 0.84 0.51
α = 0.5 3.25 0.84 0.54 3.32 0.85 0.65
α = 0.9 3.25 0.84 0.47 3.26 0.85 0.60

SDM-VAE

I 3.33 0.86 0.64 3.45 0.87 0.73
DCT (k = 32) 3.37 0.86 0.66 3.28 0.84 0.66
DCT (k = 64) 3.32 0.86 0.87 3.33 0.86 0.76

Conclusions:
▷ Advantage of sparsity as a regularizer for the model to avoid overfitting.
▷ Increasing the number of atoms in D improves sparsity.
▷ SDM-VAE exhibits a better and more stable performance than VSC.
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