

Overview

- Unsupervised audio-visual speech enhancement is addressed.
- A switching generative model (VAE) is proposed for clean speech.
- The model provides noise-agnostic speech enhancement.

Unsupervised speech enhancement

In the short-time Fourier transform (STFT) domain, for all $(f, t) \in \mathbb{B} =$ $\{0, ..., F-1\} \times \{0, ..., T-1\}$, we observe: $x_{ft} = s_{ft} + b_{ft}$

- $s_{ft} \rightarrow \text{clean speech signal}$, and $b_{ft} \rightarrow \text{noise signal}$
- $(f, t) \rightarrow$ frequency and time-frame indices.

Separate the speech and noise signals without training on noise.

Training: Learn $p(\mathbf{s}_t) = \left| p(\mathbf{s}_t | \mathbf{z}_t) p(\mathbf{z}_t) d\mathbf{z}_t \right|$ Testing: Using $p(\boldsymbol{s}_t)$ and $p(\boldsymbol{x}_t | \boldsymbol{s}_t)$ estimate $\boldsymbol{s}_t, \forall t$.

Generative model for each clean spectrogram time frame s_t :

 $\begin{cases} \boldsymbol{s}_t | \boldsymbol{z}_t \sim \mathcal{N}_c (\boldsymbol{0}, \operatorname{diag}(\boldsymbol{\sigma}_s^a(\boldsymbol{z}_t))), \\ \boldsymbol{z}_t \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \end{cases}$

- $\mathbf{z}_t \in \mathbb{R}^L$ is a latent random variable $(L \ll F)$.
- $\boldsymbol{\sigma}_s^a(.): \mathbb{R}^L \mapsto \mathbb{R}_+^F$ is a neural network parameterized by $\boldsymbol{\theta}$.

Training: learning the parameters

- Training dataset: $\mathbf{s} = {\mathbf{s}_t \in \mathbb{C}^{F} }_{t=0}^{T_{tr}-1}$
- **Difficulty**: Intractable likelihood $p_{\theta}(\mathbf{s}) = |p_{\theta}(\mathbf{s}|\mathbf{z})p(\mathbf{z})d\mathbf{z}|$
- Solution: Variational autoencoder (VAE) [Kingma and Welling 2014]

Using variational inference, maximize a lower bound of $\ln p_{\theta}(\mathbf{s})$:

$$\mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\psi}\right) = \frac{1}{T_{tr}} \sum_{t=0}^{T_{tr}-1} \mathbb{E}_{q_{\boldsymbol{\psi}}(\mathbf{z}_{t}|\mathbf{s}_{t})} \left[\ln p_{\boldsymbol{\theta}}\left(\mathbf{s}_{t}|\mathbf{z}_{t}\right) \right] - D_{\mathrm{KL}} \left(q_{\boldsymbol{\psi}}\left(\mathbf{z}_{t}|\mathbf{s}_{t}\right) \parallel p(\mathbf{z}_{t}|\mathbf{z}_{t}) \right)$$

where $q_{\psi}(\mathbf{z}_t|\mathbf{s}_t) \approx p_{\theta}(\mathbf{z}_t|\mathbf{s}_t)$ is defined by an "encoding network" with parameters $\boldsymbol{\psi}$. $D_{\mathrm{KL}}(. \parallel .)$ is the Kullback–Leibler divergence.

Testing: speech enhancement

Noisy speech model: $orall t: \quad oldsymbol{x}_t = oldsymbol{s}_t + oldsymbol{b}_t$ $\forall t : \boldsymbol{b}_t \sim \mathcal{N}_c(\mathbf{0}, \operatorname{diag}(\mathbf{WH}[:, t]))$ Noise model: Trained VAE Clean speech model:

 \triangleright Observed variables: $\mathbf{x} = {\mathbf{x}_t}_{t=0}^{T-1}$. Latent variables: $\mathbf{z} = {\mathbf{z}_t}_{t=0}^{T-1}$. \triangleright Parameters to be estimated: $\hat{\boldsymbol{\theta}}_u = \{\mathbf{W}, \mathbf{H}\}.$ Monte-Carlo Expectation maximization (MCEM) is used for inference.

Xavier Alameda-Pineda acknowledges ANR JCJC ML3RI project (ANR-19-CE33-0008-01). This work has been partially supported by MIAI @ University Grenoble Alpes, (ANR-19-P3IA-0003).

Switching Variational Auto-Encoders for Noise-Agnostic Audio-visual Speech Enhancement Mostafa $SADEGHI^1$ and Xavier $ALAMEDA-PINEDA^2$ ¹Multispeech team, Inria Nancy - Grand Est, France, ²Perception team, Inria Grenoble Rhône-Alpes, France Inference: Audio-visual modeling of clean speech \triangleright Observed variables: $\{\mathbf{x}_t, \mathbf{v}_t\}_{\underline{t}=0}^{T-1}$ λ, τ m_t \triangleright Latent variables: $\{\mathbf{s}_t, \mathbf{z}_t, m_t\}_{t=0}^{T-1}$ • Visual modality (lip movements) provides complementary information about speech. $[\boldsymbol{\xi}_{m_t}, \boldsymbol{\Lambda}_{m_t}]$ $[\boldsymbol{z}_t]$ \mathbf{W}, \mathbf{H} \triangleright Parameters to be estimated: • Audio-visual VAE (AV-VAE) model outperforms audio-only VAE (A-VAE) [Sadeghi et al., 2020]. $\{\lambda, \tau, \mathbf{W}, \mathbf{H}\}$ \triangleright Once the parameters are learned, estimate the clean speech $\{\mathbf{s}_t\}_{t=0}^{T-1}$. Variational Expectation-maximization (VEM) $p(\mathbf{s}, \mathbf{z}, \mathbf{m} | \mathbf{x}, \mathbf{v}) \approx r^s(\mathbf{s} | \mathbf{m}) r^z(\mathbf{z} | \mathbf{m}) r^m(\mathbf{m}),$ Robustness to noisy visual data \triangleright We set $r^{z}(\mathbf{z}_{t}|m_{t}) = \mathcal{N}(\mathbf{c}_{tm}, \mathbf{\Omega}_{tm})$, where \mathbf{c}_{tm} and $\mathbf{\Omega}_{tm}$ (diagonal) are to be learned along with r^s and r^m . AV-VAE yields poor performance when the visual modality is not clean, e.g., mouth area is occluded or \triangleright We optimize a lower-bound of the data log-likelihood log $p(\mathbf{x}, \mathbf{v})$: speaker's face is not frontal. MIX-VAE [Sadeghi & Alameda-Pineda, 2020]: $\mathbb{E}_{r^{s}r^{z}r^{n}}$ • A mixture of pre-trained A-VAE and AV-VAE generative models. marginalisation over m_t : • If the lip region is clean, use AV-VAE, otherwise use A-VAE. Experiments • **Corpus**: NTCD-TIMIT [Abdelaziz, 2017] **Our work: Switching VAEs** • ~ 1 hours of speech, 9 speakers; • Noise types: *LR*, *White*, *Cafe*, *Car*, *Babble*, and *Street*; • Noise levels: $\{-15, -10, -5, 0, 5, 10\}$ dB; • Clean lips region as well as noisy versions (\sim one-third of total video frames/sample) **Objective:** To devise a robust generative • VAE models: Pre-trained A-VAE and AV-VAE [Sadeghi et al., 2020] modeling framework for speech • **Baseline**: MIX-VAE [Sadeghi & Alameda-Pineda, 2020] enhancement using several VAEs with a - Land - Andrew State - Andrew .d. 🚺 dynamic selection mechanism. $AV-VAE \longrightarrow AV-VAE \longrightarrow A-VAE \longrightarrow AV-VAE \longrightarrow A-VAE$ intelligibility (\mathbf{STOI}) [0,1]. Switching Variational Auto-Encoder (SwVAE): A set of M already trained VAEs with a switching variable $m_t \in \{1, \ldots, M\}$ modeled with a Markov chain: $|p(m_1,\ldots,m_T) \sim \mathcal{MC}(\lambda,\tau),$ $\left\{ p(\mathbf{z}_t | m_t; \mathbf{v}_t) \sim \mathcal{N} \left[\boldsymbol{\xi}_{m_t}(\mathbf{v}_t), \boldsymbol{\Lambda}_{m_t}(\mathbf{v}_t) \right] \right\}$ $(\mathbf{z}_t)|$ $|p(\mathbf{s}_t|\mathbf{z}_t, m_t; \mathbf{v}_t) \sim \mathcal{N}_c(\mathbf{0}, \mathbf{\Sigma}_t)|$ \triangleright Both methods exhibit robustness to noisy visual data. \triangleright SwVAE performs better when changing noise level. • A Markovian dependency is assumed to switch between different VAE-based generative models. • The model can be understood as a Hidden Markov Model (HMM) with emission probabilities given by References the decoder of VAEs. • $\mathcal{MC}(\lambda, \tau)$ is short for a Markov chain with initial distribution λ and transition distribution τ . 1 D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," ICLR, 2014. • $\boldsymbol{\xi}_{m_t}(.), \boldsymbol{\Lambda}_{m_t}(.), \text{ and } \boldsymbol{\Sigma}_{m_t}(.,.)$ are non-linear transformations of their inputs indexed by $m_t \in \{1, \ldots, M\}$. **2** S. Leglaive et al., "A variance modeling framework based on variational autoencoders for speech enhancement," in Proc. MLSP, 2018. **3** M. Sadeghi et al., "Audio-visual Speech Enhancement Using Conditional Variational Auto-Encoder," IEEE Transactions on Audio, Speech and Language Processing, vol. 28, pp. 1788-**Testing:** speech enhancement 1800, May 2020. 4 M. Sadeghi and X. Alameda-Pineda, "Robust Unsupervised Audio-visual Speech Enhancement The observation (noise) model is like before. The clean speech model is the SwVAE consisting of several Using a Mixture of Variational Autoencoders," in Proc. ICASSP, Barcelona, Spain, May 2020. trained VAEs (here A-VAE and AV-VAE).

$$, \mathbf{\Lambda}_{m_t}(\mathbf{v}_t) \Big),$$
 (1
 $\mathbf{\Sigma}_{m_t}(\mathbf{z}_t, \mathbf{v}_t) \Big),$

Defining $\mathbf{x} = {\mathbf{x}_t}_{t=0}^{T-1}$ (analogously $\mathbf{s}, \mathbf{z}, \mathbf{m}, \mathbf{v}$), the intractable posterior of the latent variables is approximated by a variational distribution:

Variational E-Step: Optimize (2) over r^s, r^m and parameters of r^z . **M** Step: Optimize (2) over \mathbf{W}, \mathbf{H} , leading to multiplicative rules. **Clean speech estimation:** The enhanced speech signal is the

Objective measures (the higher, the better): Perceptual evaluation of speech quality (\mathbf{PESQ}) [-0.5,4.5], Signal-to-distortion ratio (\mathbf{SDR}) in dB, Short-time objective

Measure	PESQ					SDR (dB)					STOI				
SNR (dB)	-5	0	5	10	15	-5	0	5	10	15	-5	0	5	10	15
Input	1.44	1.67	2.04	2.30	2.72	-12.30	-7.30	-3.45	1.88	6.73	0.22	0.32	0.45	0.56	0.68
MIX-VAE - clean	1.70	1.92	2.29	2.48	2.66	-3.51	1.67	5.38	9.22	12.07	0.24	0.35	0.47	0.55	0.65
SwVAE - clean	1.67	1.97	2.39	2.62	2.83	-3.59	2.00	6.24	10.73	14.12	0.25	0.36	0.51	0.61	0.72
MIX-VAE - noisy	1.66	1.91	2.22	2.41	2.51	-3.78	1.50	5.18	8.72	10.88	0.23	0.34	0.45	0.53	0.63
SwVAE - noisy	1.65	1.94	2.36	2.60	2.81	-3.97	1.84	6.14	10.51	14.06	0.24	0.35	0.50	0.59	0.67

Poster number: 3517

$$\left|\log \frac{p(\mathbf{x}, \mathbf{v}, \mathbf{s}, \mathbf{z}, \mathbf{m})}{r^{s}(\mathbf{s}|\mathbf{m})r^{z}(\mathbf{z}|\mathbf{m})r^{m}(\mathbf{m})}\right| \le \log p(\mathbf{x}, \mathbf{v})$$
(2)

$$\mathbf{\hat{s}}_t = \mathbb{E}_{r^m(m_t)} \Big| \mathbb{E}_{r^s(\mathbf{s}_t|m_t)}[\mathbf{s}_t] \Big|, \quad orall t.$$

5 A. H. Abdelaziz, "NTCD-TIMIT: A new database and baseline for noise-robust audio-visual speech recognition," in Proc. INTERSPEECH, 2017.