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Introduction



Unsupervised speech enhancement

noisy mixture clean
signal speech signal

In the short-time Fourier transform (STFT) domain, for all
(f,t) eB=A{0,..,F —1} x{0,...,T — 1}, we observe:
e sy; — clean speech signal, and by — noise signal

e (f,t) — frequency and time-frame indices.

[ Separate the speech and noise signals without training on noise. ]

> No training on noise, hence unsupervised.



Generative speech model [Bando et al., 2018; Leglaive et al., 2018]

Training: Learn p(s;) = [ p(si|z:)p(z¢)dz,

Testing: Using p(s;) and p(xz|s;) estimate s, Vt.

Generative model for each clean spectrogram time frame s;:

silz ~ N.(0,diag(0%(z)),  with 2 ~A(0,T)

e z; € R is a latent random variable (L < F)

e 0¢(.) : RY — RY is a neural network parameterized by 0

[ Estimate the generative model parameters, i.e. 6. ]




Training: learning the parameters

e Training dataset of STFT speech time frames: s = {s; € CF'} 71

e Difficulty: Intractable likelihood p(s;80) = /p(s\z;@)p(z)dz

e Solution: Variational autoencoder (VAE) [Kingma and Welling 2014]

~
Using variational inference, maximize a lower bound of Inp(s;8):
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Testing: speech enhancement

Noisy speech model: Vt: x; = 8;+ by

Noise model: Vt: by~ N.(0,diag(WH][:,¢]))

Clean speech model: Trained VAE

> Observed variables: x = {x;}Z . Latent variables: z = {z ?;01

> Parameters to be estimated: 6, = {W,H}

Monte-Carlo Expectation maximization (MCEM):

J E'Step: Q(0u70u) ]Ep(z\x (2 [hlp(x Z; 0 0 )}
e M-Step: 0;, < argmaxg Q(0;0;).

Speech estimation:
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Audio-visual modeling of clean speech [Sadeghi et al., 2020]

e Visual modality (lip movements) provides complementary information about
speech.

e Audio-visual VAE (AV-VAE) model outperforms audio-only VAE (A-VAE)
[Sadeghi et al., 2020].
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Robustness to noisy visual data

AV-VAE vyields poor performance when the visual modality is not clean, e.g.,
mouth area is occluded or speaker’s face is not frontal.

MIX-VAE [Sadeghi & Alameda-Pineda, 2020]:

e A mixture of pre-trained
A-VAE and AV-VAE
generative models.

If the lip region is cl To5/®
° e lip region is clean, 2 @SOS
use AV-VAE, otherwise use a0 S

— /
A-VAE. e 7
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Switching Variational
Auto-Encoders




Introduction
Objective: To devise a robust ‘ ! - S
generative modeling framework mwm-[m

for speech enhancement using

several VAEs with a dynamic

SeleCtlon meCh anism. AV-VAE—> AV-VAE —> A-VAE —» AV-VAE —» A-VAE

Switching Variational Auto-Encoders (SWVAE):

e A Markovian dependency is assumed to switch between different VAE-based
generative models.

e The model can be understood as a Hidden Markov Model (HMM) with
emission probabilities given by the decoder of VAEs.

e A variational factorization of the posterior distribution of the latent variables
is proposed.



Proposed model

A set of M already trained VAEs with a switching variable m; € {1,..., M}
modeled with a Markov chain:

p(mla . 7mT) ~ MC()\J T)a

p(zt’mt; Ut) ~ N(&mt (vt)v Amt (Ut))7

p(s¢|ze, my; ve) ~ N (07 Emt<zt7vt))a

e MC(A,7) is short for a Markov chain with initial distribution A and
transition distribution 7,

® &, (), Ap,(.), and 3, (.,.) are non-linear transformations of their inputs
indexed by m; € {1,..., M} and realized as DNNs.



Testing: speech enhancement

Noisy speech model: Vi: o =8+ b

Noise model: Vt: by~ N (0,diag(WH[:,t])>
Clean speech model: Trained VAE generative networks
Inference:

> Observed variables: {x;, v}/ "

. T—1
> Latent variables: {st,zt,mt}tzo
> Parameters to be estimated:

{\,7, W, H}

> Once the parameters are learned,

0 _ (a) Graphical model (b) Variational approximation
estimate the clean speech {s;}/_,.



Parameter estimation

Variational Expectation-maximization (VEM)

Variational E-Step:

Defining © = {z,} ;' (analogously s, z,m,v), the intractable posterior of the
latent variables is approximated by a variational distribution:

(s, z, m|x,v) = r(s|m)r®(zlm)r"(m),

> r® (and 7*) further factorize over time: r*(s|m) =[], r*(s¢|my)

> We set 7%(z¢|my) = N (ctm, Qum), where ¢y, and Qyy, (diagonal) are to
be learned along with r® and r.

> We optimize a lower-bound of the data log-likelihood log p(x, v):

p(mu v, s, z, m)

E’I‘S’!‘Z’I”m log S log p(w7 ’U)

re(slm)r(z|m)rm(m)
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r°(8¢|my) o< p(a¢|se) - exp (]Erz [Ing(st‘zta my; Ut)D

my
my Vst

) T]ft = 7’\/7M+(WH) Tyt
Ne(ni™, diag[vy™]), a,ffjf (WH)ff:

v 16 = T LA
It Wf;tJF(WH)ff,

7(8¢|my) =

which can be interpreted is an averaged Wiener filtering. Also:

me __ d
Trt —{ szf (2 (=50, t)}

e Y., ¢f denotes the (f, f)-th entry of %,,,,

o {z,(ffZ}UzD:1 is a sequence sampled from r*(z¢|m¢).

> The enhanced speech signal is the marginalisation over m;:

o, — "L mt
St —Errn(,n“) ]E 5(8¢|ms) St:| E r s Vt.
me
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The set of parameters of r*(z¢|m;) is estimated by solving:

R Epm(my) {Erz(zt\mt) |:ET'*(8¢|mt) {10gp(8t|zt, my; Ut)”
ctnu tm

— D (z1lma) [p(zelmes 02))]
> Expectations over "™ and r®, and the KL term can be evaluated in closed-form.
> Expectation over 7% is approximated with a single sample drawn from 7.

> To back-propagate through the posterior parameters, the reparametrization

trick is utilized

> A few iterations (of Adam optimizer) is enough for the convergence.
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For r™(m), we obtain:

T
r™(m) o p(m) - [ [ exp(=g:(my)) (1)
with:
gi(my) =E, - {KL(rs(st\mt)Hp(sﬂzt,mt;'vt))} —
E,s {logp(scﬁst)} + Di(r* (z¢|me) ||p(z¢|me; ve))

> Expectation over 7% is approximated by a Monte-Carlo estimate.

> To compute the marginal variational posterior 7 (m;), note that (1) has the
same structure as standard HMM if we consider exp(—g:(m:)) as the emission
probability of the HMM.

— We therefore use the forward-backward algorithm to compute 7™ (my).
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‘W and H are updated by optimizing the log-likelihood lower bound. Doing so,

we obtain:
wT (V © (WH)Q_Q)

H+«HO
WT (WH)®!

)

(V © (WH)(H) HT

W+ Wao
(WH)® 'HT

7

where V.= |57 r™(m¢)(|zpe — 0y |2+ V}';t)] Gy and © signifies entry-wise

operation.

> The parameters of the HMM, i.e. A and 7, are updated by the standard
formulae using the joint posterior probabilities computed by the forward-backward

algorithm in the E-m step.
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Experiments




e Noisy+clean speech: NTCD-TIMIT database [Abdelaziz, 2017]

e Testing set of NTCD-TIMIT database;

e ~ 1 hour of speech;

e 9 speakers;

e Noise types: LR, White, Cafe, Car, Babble, and Street;

e Noise levels: {—15,-10,—5,0,5,10} dB;

e 270 noisy mixtures per noise level;

e Different speakers and sentences than in the training set;

e Clean lips region as well as noisy versions (~ one-third of total video
frames/sample)

e VAE models: Pre-trained A-VAE and AV-VAE [Sadeghi et al., 2020]

e Baseline: MIX-VAE [Sadeghi & Alameda-Pineda, 2020]
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Results

Objective measures (the higher, the better):

e Perceptual evaluation of speech quality (PESQ) measure in [-0.5,4.5],
e Signal-to-distortion ratio (SDR) in dB,

e Short-time objective intelligibility (STOI) in [0,1].

Results:

[ Measure [ PESQ I SDR (dB) I STO! \
| SNR (dB) | 5] o[ 5 Jww ][] 5 o] s[5 || 5]o0o]s [10]15)|
Input 144 [ 167 [ 2.04 [ 230 [ 2.72 1230 [ -7.30 [ -345 | 1.88 | 6.73 [ 0.22 [ 0.32 [ 0.45 [ 0.56 | 0.68

MIX-VAE - clean | 1.70 | 1.92 | 2.29 | 2.48 | 2.66 || -3.51 | 1.67 | 5.38 | 9.22 | 12.07 || 0.24 | 0.35 | 0.47 | 0.55 | 0.65
SwWVAE - clean 167 | 1.97 | 2.39 | 2.62 | 2.83 || -3.59 | 2.00 | 6.24 | 10.73 | 14.12 || 0.25 | 0.36 | 0.51 | 0.61 | 0.72
MIX-VAE - noisy | 1.66 | 1.91 | 2.22 | 2.41 | 251 || -3.78 | 1.50 | 5.18 | 8.72 | 10.88 || 0.23 | 0.34 | 0.45 | 0.53 | 0.63
SwVAE - noisy 165 | 1.94 | 2.36 | 2.60 | 2.81 || -3.97 | 1.84 | 6.14 | 10.51 | 14.06 || 0.24 | 0.35 | 0.50 | 0.59 | 0.67
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Conclusion and future work

The proposed switching generative model provides a dynamic
mechanism to make the performance robust with respect to noisy

audio and visual data.

e The VEM framework is slow. Trying to re-use the trained encoders at
inference time can reduce the complexity.

e Temporal modeling of the latent variables to benefit from time dependency
between audio as well as visual frames.
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[ Thank you for your attention ]
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