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Introduction



Unsupervised speech enhancement

In the short-time Fourier transform (STFT) domain, for all

(f, t) ∈ B = {0, ..., F − 1} × {0, ..., T − 1}, we observe: xft = sft + bft

• sft → clean speech signal, and bft → noise signal

• (f, t)→ frequency and time-frame indices.

Separate the speech and noise signals without training on noise.

. No training on noise, hence unsupervised.
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Generative speech model [Bando et al., 2018; Leglaive et al., 2018]

Training: Learn p(st) =
∫
p(st|zt)p(zt)dzt

Testing: Using p(st) and p(xt|st) estimate st, ∀t.

Generative model for each clean spectrogram time frame st:

st|zt ∼ Nc
(
0, diag(σas(zt))

)
, with zt ∼ N (0, I)

• zt ∈ RL is a latent random variable (L� F )

• σas(.) : RL 7→ RF+ is a neural network parameterized by θ

Estimate the generative model parameters, i.e. θ.
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Training: learning the parameters

• Training dataset of STFT speech time frames: s = {st ∈ CF }Ttr−1
t=0

• Difficulty: Intractable likelihood p(s;θ) =

∫
p(s|z;θ)p(z)dz

• Solution: Variational autoencoder (VAE) [Kingma and Welling 2014]

Using variational inference, maximize a lower bound of ln p(s;θ):

L (θ,ψ) =
1

Ttr

Ttr−1∑
t=0

Eq(zt|st;ψ)

[
ln p (st|zt;θ)

]
−DKL

(
q (zt|st;ψ) ‖ p(zt)

)
where q (zt|st;ψ) ≈ p(zt|st;θ) is defined by an “encoding network” with pa-

rameters ψ. DKL(. ‖ .) is the Kullback–Leibler divergence.
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Testing: speech enhancement

Noisy speech model: ∀t : xt = st + bt

Noise model: ∀t : bt ∼ Nc (0, diag(WH[:, t]))

Clean speech model: Trained VAE

. Observed variables: x = {xt}T−1t=0 . Latent variables: z =
{
zt
}T−1
t=0

. Parameters to be estimated: θu = {W,H}

Monte-Carlo Expectation maximization (MCEM):

• E-Step: Q(θu;θ?u) = Ep(z|x;θ?
u)

[ln p(x, z;θ,θu)].

• M-Step: θ?u ← arg maxθu
Q(θu;θ?u).

Speech estimation:

ŝft = Ep(sft|xft;θ
∗)[sft] = Ep(zt|xt;θ

∗)

[
Ep(sft|zt,xt;θ

∗)[sft]
]
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Audio-visual modeling of clean speech [Sadeghi et al., 2020]

• Visual modality (lip movements) provides complementary information about

speech.

• Audio-visual VAE (AV-VAE) model outperforms audio-only VAE (A-VAE)

[Sadeghi et al., 2020].
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Robustness to noisy visual data

AV-VAE yields poor performance when the visual modality is not clean, e.g.,

mouth area is occluded or speaker’s face is not frontal.

MIX-VAE [Sadeghi & Alameda-Pineda, 2020]:

• A mixture of pre-trained

A-VAE and AV-VAE

generative models.

• If the lip region is clean,

use AV-VAE, otherwise use

A-VAE.

mixture
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Switching Variational

Auto-Encoders



Introduction

Objective: To devise a robust

generative modeling framework

for speech enhancement using

several VAEs with a dynamic

selection mechanism. AV-VAE AV-VAE A-VAE AV-VAE A-VAE

Switching Variational Auto-Encoders (SwVAE):

• A Markovian dependency is assumed to switch between different VAE-based

generative models.

• The model can be understood as a Hidden Markov Model (HMM) with

emission probabilities given by the decoder of VAEs.

• A variational factorization of the posterior distribution of the latent variables

is proposed.
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Proposed model

A set of M already trained VAEs with a switching variable mt ∈ {1, . . . ,M}
modeled with a Markov chain:

p(m1, . . . ,mT ) ∼MC(λ, τ),

p(zt|mt;vt) ∼ N
(
ξmt

(vt),Λmt(vt)
)
,

p(st|zt,mt;vt) ∼ Nc

(
0,Σmt(zt,vt)

)
,

• MC(λ, τ) is short for a Markov chain with initial distribution λ and

transition distribution τ ,

• ξmt
(.), Λmt(.), and Σmt(., .) are non-linear transformations of their inputs

indexed by mt ∈ {1, . . . ,M} and realized as DNNs.
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Testing: speech enhancement

Noisy speech model: ∀t : xt = st + bt

Noise model: ∀t : bt ∼ Nc
(
0, diag(WH[:, t])

)
Clean speech model: Trained VAE generative networks

Inference:

. Observed variables: {xt,vt}T−1t=0

. Latent variables:
{
st, zt,mt

}T−1
t=0

. Parameters to be estimated:

{λ, τ,W,H}

. Once the parameters are learned,

estimate the clean speech {st}T−1t=0 .
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Parameter estimation

Variational Expectation-maximization (VEM)

Variational E-Step:

Defining x = {xt}T−1t=0 (analogously s, z,m,v), the intractable posterior of the

latent variables is approximated by a variational distribution:

p(s, z,m|x,v) ≈ rs(s|m)rz(z|m)rm(m),

. rs (and rz) further factorize over time: rs(s|m) =
∏

t r
s(st|mt)

. We set rz(zt|mt) = N (ctm,Ωtm), where ctm and Ωtm (diagonal) are to

be learned along with rs and rm.

. We optimize a lower-bound of the data log-likelihood log p(x,v):

Ersrzrm

[
log

p(x,v, s, z,m)

rs(s|m)rz(z|m)rm(m)

]
≤ log p(x,v)
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VE st-step

rs(st|mt) ∝ p(xt|st) · exp
(
Erz
[

log p(st|zt,mt;vt)
])

rs(st|mt) = Nc(ηmt
t , diag[νmt

t ]),

η
mt

ft =
γ
mt
ft

γ
mt
ft +(WH)ft

· xft

νmt

ft =
γ
mt
ft ·(WH)ft

γ
mt
ft +(WH)ft

which can be interpreted is an averaged Wiener filtering. Also:

γmt

ft =
[ 1

D

D∑
d=1

Σ−1mt,ff
(z(d)mt

,vt)
]−1

• Σmt,ff denotes the (f, f)-th entry of Σmt
,

• {z(d)mt}Dd=1 is a sequence sampled from rz(zt|mt).

. The enhanced speech signal is the marginalisation over mt:

ŝt = Erm(mt)

[
Ers(st|mt)[st]

]
=
∑
mt

rm(mt)η
mt
t , ∀t.
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VE zt-step

The set of parameters of rz(zt|mt) is estimated by solving:

max
ctm,Ωtm

Erm(mt)

[
Erz(zt|mt)

[
Ers(st|mt)

[
log p(st|zt,mt;vt)

]]
−DKL(rz(zt|mt)‖p(zt|mt;vt))

]
.

. Expectations over rm and rs, and the KL term can be evaluated in closed-form.

. Expectation over rz is approximated with a single sample drawn from rz.

. To back-propagate through the posterior parameters, the reparametrization

trick is utilized

. A few iterations (of Adam optimizer) is enough for the convergence.
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VE mt-step

For rm(m), we obtain:

rm(m) ∝ p(m) ·
T∏
t=1

exp(−gt(mt)) (1)

with:

gt(mt) =Erz
[
KL(rs(st|mt)‖p(st|zt,mt;vt))

]
−

Ers
[

log p(xt|st)
]

+DKL(rz(zt|mt)‖p(zt|mt;vt))

. Expectation over rz is approximated by a Monte-Carlo estimate.

. To compute the marginal variational posterior rm(mt), note that (1) has the

same structure as standard HMM if we consider exp(−gt(mt)) as the emission

probability of the HMM.

→ We therefore use the forward-backward algorithm to compute rm(mt).
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M step

W and H are updated by optimizing the log-likelihood lower bound. Doing so,

we obtain:

H← H�
W>

(
V� (WH)

�−2
)

W> (WH)
�−1 ,

W←W �

(
V� (WH)

�−2
)

H>

(WH)
�−1

H>
,

where V =
[∑

mt
rm(mt)(|xft − ηmt

ft |2 + νmt

ft )
]
(f,t)

, and � signifies entry-wise

operation.

. The parameters of the HMM, i.e. λ and τ , are updated by the standard

formulae using the joint posterior probabilities computed by the forward-backward

algorithm in the E-m step.
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Experiments



Setup

• Noisy+clean speech: NTCD-TIMIT database [Abdelaziz, 2017]

• Testing set of NTCD-TIMIT database;

• ∼ 1 hour of speech;

• 9 speakers;

• Noise types: LR, White, Cafe, Car, Babble, and Street;

• Noise levels: {−15,−10,−5, 0, 5, 10} dB;

• 270 noisy mixtures per noise level;

• Different speakers and sentences than in the training set;

• Clean lips region as well as noisy versions (∼ one-third of total video

frames/sample)

• VAE models: Pre-trained A-VAE and AV-VAE [Sadeghi et al., 2020]

• Baseline: MIX-VAE [Sadeghi & Alameda-Pineda, 2020]
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Results

Objective measures (the higher, the better):

• Perceptual evaluation of speech quality (PESQ) measure in [-0.5,4.5],

• Signal-to-distortion ratio (SDR) in dB,

• Short-time objective intelligibility (STOI) in [0,1].

Results:

Measure PESQ SDR (dB) STOI

SNR (dB) -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15

Input 1.44 1.67 2.04 2.30 2.72 -12.30 -7.30 -3.45 1.88 6.73 0.22 0.32 0.45 0.56 0.68

MIX-VAE - clean 1.70 1.92 2.29 2.48 2.66 -3.51 1.67 5.38 9.22 12.07 0.24 0.35 0.47 0.55 0.65

SwVAE - clean 1.67 1.97 2.39 2.62 2.83 -3.59 2.00 6.24 10.73 14.12 0.25 0.36 0.51 0.61 0.72

MIX-VAE - noisy 1.66 1.91 2.22 2.41 2.51 -3.78 1.50 5.18 8.72 10.88 0.23 0.34 0.45 0.53 0.63

SwVAE - noisy 1.65 1.94 2.36 2.60 2.81 -3.97 1.84 6.14 10.51 14.06 0.24 0.35 0.50 0.59 0.67
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Conclusion and future work

The proposed switching generative model provides a dynamic

mechanism to make the performance robust with respect to noisy

audio and visual data.

• The VEM framework is slow. Trying to re-use the trained encoders at

inference time can reduce the complexity.

• Temporal modeling of the latent variables to benefit from time dependency

between audio as well as visual frames.
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Thank you for your attention
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