Switching Variational Auto-Encoders for Noise-Agnostic Audio-visual Speech Enhancement

Mostafa SADEGHI¹ Xavier ALAMEDA-PINEDA²

 $^1\rm Multispeech$ team, Inria Nancy - Grand Est, France $^2\rm Perception$ team, Inria Grenoble Rhône-Alpes, France

IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)

June 6-11, 2021

*Xavier Alameda-Pineda acknowledges ANR JCJC ML3RI project (ANR-19-CE33-0008-01). This work has been partially supported by MIAI @ University Grenoble Alpes, (ANR-19-P3IA-0003).

Introduction

Unsupervised speech enhancement

In the short-time Fourier transform (STFT) domain, for all $(f,t) \in \mathbb{B} = \{0, ..., F-1\} \times \{0, ..., T-1\}$, we observe: $\boxed{x_{ft}}$

$$x_{ft} = s_{ft} + b_{ft}$$

- $s_{ft} \rightarrow$ clean speech signal, and $b_{ft} \rightarrow$ noise signal
- $(f,t) \rightarrow$ frequency and time-frame indices.

Separate the speech and noise signals without training on noise.

▷ No training on noise, hence unsupervised.

Generative speech model [Bando et al., 2018; Leglaive et al., 2018]

Training: Learn
$$p(s_t) = \int p(s_t | \mathbf{z}_t) p(\mathbf{z}_t) d\mathbf{z}_t$$

Testing: Using $p(s_t)$ and $p(x_t|s_t)$ estimate s_t , $\forall t$.

Generative model for each clean spectrogram time frame s_t :

$$oldsymbol{s}_t | \mathbf{z}_t \sim \mathcal{N}_c \Big(\mathbf{0}, \mathsf{diag}(oldsymbol{\sigma}_s^a(\mathbf{z}_t)) \Big), \qquad \mathsf{with} \ \ \mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

- $\mathbf{z}_t \in \mathbb{R}^L$ is a latent random variable $(L \ll F)$
- $\sigma_s^a(.): \mathbb{R}^L \mapsto \mathbb{R}^F_+$ is a neural network parameterized by heta

Estimate the generative model parameters, i.e. θ .

Training: learning the parameters

- Training dataset of STFT speech time frames: $\mathbf{s} = {\{\mathbf{s}_t \in \mathbb{C}^F\}_{t=0}^{T_{tr}-1}}$
- Difficulty: Intractable likelihood $p(\mathbf{s}; \boldsymbol{\theta}) = \int p(\mathbf{s} | \mathbf{z}; \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$
- Solution: Variational autoencoder (VAE) [Kingma and Welling 2014]

Using variational inference, maximize a lower bound of $\ln p(\mathbf{s}; \boldsymbol{\theta})$:

$$\mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\psi}\right) = \frac{1}{T_{tr}} \sum_{t=0}^{T_{tr}-1} \mathbb{E}_{q(\mathbf{z}_{t}|\mathbf{s}_{t};\boldsymbol{\psi})} \Big[\ln p\left(\mathbf{s}_{t}|\mathbf{z}_{t};\boldsymbol{\theta}\right) \Big] - D_{\mathsf{KL}} \Big(q\left(\mathbf{z}_{t}|\mathbf{s}_{t};\boldsymbol{\psi}\right) \parallel p(\mathbf{z}_{t}) \Big)$$

where $q(\mathbf{z}_t|\mathbf{s}_t; \boldsymbol{\psi}) \approx p(\mathbf{z}_t|\mathbf{s}_t; \boldsymbol{\theta})$ is defined by an "encoding network" with parameters $\boldsymbol{\psi}$. $D_{\mathsf{KL}}(. \parallel .)$ is the Kullback–Leibler divergence.

Testing: speech enhancement

Noisy speech model: $\forall t : x_t = s_t + b_t$ Noise model: $\forall t : b_t \sim \mathcal{N}_c \left(\mathbf{0}, \text{diag}(\mathbf{WH}[:, t]) \right)$ Clean speech model:Trained VAE

▷ Observed variables: $\mathbf{x} = {\mathbf{x}_t}_{t=0}^{T-1}$. Latent variables: $\mathbf{z} = {\mathbf{z}_t}_{t=0}^{T-1}$ ▷ Parameters to be estimated: $\boldsymbol{\theta}_u = {\mathbf{W}, \mathbf{H}}$

Monte-Carlo Expectation maximization (MCEM):

- E-Step: $Q(\boldsymbol{\theta}_u; \boldsymbol{\theta}_u^{\star}) = \mathbb{E}_{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}_u^{\star})}[\ln p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}, \boldsymbol{\theta}_u)].$
- M-Step: $\boldsymbol{\theta}_u^{\star} \leftarrow \operatorname{arg\,max}_{\boldsymbol{\theta}_u} Q(\boldsymbol{\theta}_u; \boldsymbol{\theta}_u^{\star}).$

Speech estimation:

$$\hat{s}_{ft} = \mathbb{E}_{p(s_{ft}|x_{ft};\boldsymbol{\theta}^*)}[s_{ft}] = \mathbb{E}_{p(\mathbf{z}_t|\mathbf{x}_t;\boldsymbol{\theta}^*)} \left[\mathbb{E}_{p(s_{ft}|\mathbf{z}_t,\mathbf{x}_t;\boldsymbol{\theta}^*)}[s_{ft}] \right]$$

Audio-visual modeling of clean speech [Sadeghi et al., 2020]

- Visual modality (lip movements) provides complementary information about speech.
- Audio-visual VAE (AV-VAE) model outperforms audio-only VAE (A-VAE) [Sadeghi et al., 2020].

AV-VAE yields poor performance when the visual modality is not clean, e.g., mouth area is occluded or speaker's face is not frontal.

MIX-VAE [Sadeghi & Alameda-Pineda, 2020]:

- A mixture of pre-trained A-VAE and AV-VAE generative models.
- If the lip region is clean, use AV-VAE, otherwise use A-VAE.

Switching Variational Auto-Encoders

Introduction

Objective: To devise a robust generative modeling framework for speech enhancement using several VAEs with a dynamic selection mechanism.

Switching Variational Auto-Encoders (SwVAE):

- A Markovian dependency is assumed to switch between different VAE-based generative models.
- The model can be understood as a Hidden Markov Model (HMM) with emission probabilities given by the decoder of VAEs.
- A variational factorization of the posterior distribution of the latent variables is proposed.

A set of M already trained VAEs with a switching variable $m_t \in \{1, ..., M\}$ modeled with a Markov chain:

$$\begin{cases} p(m_1, \dots, m_T) \sim \mathcal{MC}(\lambda, \tau), \\ p(\boldsymbol{z}_t | m_t; \boldsymbol{v}_t) \sim \mathcal{N}\Big(\boldsymbol{\xi}_{m_t}(\boldsymbol{v}_t), \boldsymbol{\Lambda}_{m_t}(\boldsymbol{v}_t)\Big), \\ p(\boldsymbol{s}_t | \boldsymbol{z}_t, m_t; \boldsymbol{v}_t) \sim \mathcal{N}_c\Big(\boldsymbol{0}, \boldsymbol{\Sigma}_{m_t}(\boldsymbol{z}_t, \boldsymbol{v}_t)\Big), \end{cases} \end{cases}$$

- $\mathcal{MC}(\lambda, \tau)$ is short for a Markov chain with initial distribution λ and transition distribution τ ,
- $\boldsymbol{\xi}_{m_t}(.)$, $\boldsymbol{\Lambda}_{m_t}(.)$, and $\boldsymbol{\Sigma}_{m_t}(.,.)$ are non-linear transformations of their inputs indexed by $m_t \in \{1, \ldots, M\}$ and realized as DNNs.

Noisy speech model:

Noise model:

$$\forall t: \quad b_t \sim \mathcal{N}_c \Big(\mathbf{0}, \mathsf{diag}(\mathbf{WH}[:, t]) \Big)$$

 $\forall t: x_t = s_t + b_t$

Clean speech model:

Inference:

 $\triangleright \text{ Observed variables: } \{\mathbf{x}_t, \mathbf{v}_t\}_{t=0}^{T-1}$ $\triangleright \text{ Latent variables: } \{\mathbf{s}_t, \mathbf{z}_t, m_t\}_{t=0}^{T-1}$ $\triangleright \text{ Parameters to be estimated:}$ $\{\lambda, \tau, \mathbf{W}, \mathbf{H}\}$

 \triangleright Once the parameters are learned, estimate the clean speech $\{\mathbf{s}_t\}_{t=0}^{T-1}$.

Variational Expectation-maximization (VEM)

Variational E-Step:

Defining $x = \{x_t\}_{t=0}^{T-1}$ (analogously s, z, m, v), the intractable posterior of the latent variables is approximated by a variational distribution:

 $p(\boldsymbol{s}, \boldsymbol{z}, \boldsymbol{m} | \boldsymbol{x}, \boldsymbol{v}) \approx r^{s}(\boldsymbol{s} | \boldsymbol{m}) r^{z}(\boldsymbol{z} | \boldsymbol{m}) r^{m}(\boldsymbol{m}),$

 $\triangleright r^s \text{ (and } r^z \text{) further factorize over time: } r^s(s|m) = \prod_t r^s(s_t|m_t)$ $\triangleright \text{ We set } r^z(z_t|m_t) = \mathcal{N}(c_{tm}, \Omega_{tm}) \text{, where } c_{tm} \text{ and } \Omega_{tm} \text{ (diagonal) are to}$ be learned along with r^s and r^m .

 \triangleright We optimize a lower-bound of the data log-likelihood $\log p(\boldsymbol{x}, \boldsymbol{v})$:

$$\mathbb{E}_{r^{s}r^{z}r^{m}}\left[\log\frac{p(\boldsymbol{x},\boldsymbol{v},\boldsymbol{s},\boldsymbol{z},\boldsymbol{m})}{r^{s}(\boldsymbol{s}|\boldsymbol{m})r^{z}(\boldsymbol{z}|\boldsymbol{m})r^{m}(\boldsymbol{m})}\right] \leq \log p(\boldsymbol{x},\boldsymbol{v})$$

r

$$r^{s}(\boldsymbol{s}_{t}|\boldsymbol{m}_{t}) \propto p(\boldsymbol{x}_{t}|\boldsymbol{s}_{t}) \cdot \exp\left(\mathbb{E}_{r^{z}}\left[\log p(\boldsymbol{s}_{t}|\boldsymbol{z}_{t},\boldsymbol{m}_{t};\boldsymbol{v}_{t})\right]\right)$$

$$s^{s}(\boldsymbol{s}_{t}|\boldsymbol{m}_{t}) = \mathcal{N}_{c}(\boldsymbol{\eta}_{t}^{m_{t}}, \mathsf{diag}[\boldsymbol{\nu}_{t}^{m_{t}}]), \quad \begin{cases} \boldsymbol{\eta}_{ft}^{m_{t}} = \frac{\boldsymbol{\gamma}_{ft}^{m_{t}}}{\boldsymbol{\gamma}_{ft}^{m_{t}} + (\mathbf{WH})_{ft}} \cdot \boldsymbol{x}_{ft} \\ \boldsymbol{\nu}_{ft}^{m_{t}} = \frac{\boldsymbol{\gamma}_{ft}^{m_{t}} \cdot (\mathbf{WH})_{ft}}{\boldsymbol{\gamma}_{ft}^{m_{t}} + (\mathbf{WH})_{ft}} \end{cases}$$

which can be interpreted is an averaged Wiener filtering. Also:

$$\gamma_{ft}^{m_t} = \left[\frac{1}{D} \sum_{d=1}^{D} \Sigma_{m_t, ff}^{-1}(\boldsymbol{z}_{m_t}^{(d)}, \boldsymbol{v}_t)\right]^{-1}$$

- $\Sigma_{m_t,ff}$ denotes the (f,f)-th entry of $\mathbf{\Sigma}_{m_t}$,
- $\{\boldsymbol{z}_{m_t}^{(d)}\}_{d=1}^D$ is a sequence sampled from $r^z(\boldsymbol{z}_t|m_t)$.

 \triangleright The enhanced speech signal is the marginalisation over m_t :

$$\hat{\boldsymbol{s}}_t = \mathbb{E}_{r^m(m_t)} \Big[\mathbb{E}_{r^s(\boldsymbol{s}_t|m_t)}[\boldsymbol{s}_t] \Big] = \sum_{m_t} r^m(m_t) \boldsymbol{\eta}_t^{m_t}, \quad \forall t.$$

The set of parameters of $r^{z}(\boldsymbol{z}_{t}|m_{t})$ is estimated by solving:

$$\max_{\boldsymbol{c}_{tm},\boldsymbol{\Omega}_{tm}} \mathbb{E}_{r^{m}(m_{t})} \Big[\mathbb{E}_{r^{z}(\boldsymbol{z}_{t}|m_{t})} \Big[\mathbb{E}_{r^{s}(\boldsymbol{s}_{t}|m_{t})} \Big[\log p(\boldsymbol{s}_{t}|\boldsymbol{z}_{t},m_{t};\boldsymbol{v}_{t}) \Big] \Big] \\ - D_{\mathsf{KL}} (r^{z}(\boldsymbol{z}_{t}|m_{t}) \| p(\boldsymbol{z}_{t}|m_{t};\boldsymbol{v}_{t})) \Big].$$

 \triangleright Expectations over r^m and r^s , and the KL term can be evaluated in closed-form.

 \triangleright Expectation over r^z is approximated with a single sample drawn from r^z .

 \triangleright To back-propagate through the posterior parameters, the reparametrization trick is utilized

▷ A few iterations (of Adam optimizer) is enough for the convergence.

VE m_t -step

For $r^m(\boldsymbol{m})$, we obtain:

$$r^{m}(\boldsymbol{m}) \propto p(\boldsymbol{m}) \cdot \prod_{t=1}^{T} \exp(-g_{t}(m_{t}))$$
 (1)

with:

$$g_t(m_t) = \mathbb{E}_{r^z} \Big[\mathrm{KL}(r^s(\boldsymbol{s}_t | m_t) \| p(\boldsymbol{s}_t | \boldsymbol{z}_t, m_t; \boldsymbol{v}_t)) \Big] - \\ \mathbb{E}_{r^s} \Big[\log p(\boldsymbol{x}_t | \boldsymbol{s}_t) \Big] + D_{\mathsf{KL}}(r^z(\boldsymbol{z}_t | m_t) \| p(\boldsymbol{z}_t | m_t; \boldsymbol{v}_t))$$

 \triangleright Expectation over r^z is approximated by a Monte-Carlo estimate.

 \triangleright To compute the marginal variational posterior $r^m(m_t)$, note that (1) has the same structure as standard HMM if we consider $\exp(-g_t(m_t))$ as the emission probability of the HMM.

 \rightarrow We therefore use the forward-backward algorithm to compute $r^m(m_t)$.

 ${\bf W}$ and ${\bf H}$ are updated by optimizing the log-likelihood lower bound. Doing so, we obtain:

$$\begin{split} \mathbf{H} &\leftarrow \mathbf{H} \odot \frac{\mathbf{W}^{\top} \left(\mathbb{V} \odot (\mathbf{W}\mathbf{H})^{\odot - 2} \right)}{\mathbf{W}^{\top} (\mathbf{W}\mathbf{H})^{\odot - 1}}, \\ \mathbf{W} &\leftarrow \mathbf{W} \odot \frac{\left(\mathbb{V} \odot (\mathbf{W}\mathbf{H})^{\odot - 2} \right) \mathbf{H}^{\top}}{(\mathbf{W}\mathbf{H})^{\odot - 1} \mathbf{H}^{\top}}, \end{split}$$

where $\mathbb{V} = \left[\sum_{m_t} r^m(m_t)(|x_{ft} - \eta_{ft}^{m_t}|^2 + \nu_{ft}^{m_t})\right]_{(f,t)}$, and \odot signifies entry-wise operation.

 \triangleright The parameters of the HMM, i.e. λ and τ , are updated by the standard formulae using the joint posterior probabilities computed by the forward-backward algorithm in the E-m step.

Experiments

Setup

- Noisy+clean speech: NTCD-TIMIT database [Abdelaziz, 2017]
 - Testing set of NTCD-TIMIT database;
 - $\bullet~\sim 1$ hour of speech;
 - 9 speakers;
 - Noise types: LR, White, Cafe, Car, Babble, and Street;
 - Noise levels: $\{-15, -10, -5, 0, 5, 10\} \text{ dB};$
 - 270 noisy mixtures per noise level;
 - Different speakers and sentences than in the training set;
 - Clean lips region as well as noisy versions (\sim one-third of total video frames/sample)
- VAE models: Pre-trained A-VAE and AV-VAE [Sadeghi et al., 2020]
- Baseline: MIX-VAE [Sadeghi & Alameda-Pineda, 2020]

Objective measures (the higher, the better):

- Perceptual evaluation of speech quality (PESQ) measure in [-0.5,4.5],
- Signal-to-distortion ratio (SDR) in dB,
- Short-time objective intelligibility (STOI) in [0,1].

Results:

Measure	PESQ					SDR (dB)					STOI				
SNR (dB)	-5	0	5	10	15	-5	0	5	10	15	-5	0	5	10	15
Input	1.44	1.67	2.04	2.30	2.72	-12.30	-7.30	-3.45	1.88	6.73	0.22	0.32	0.45	0.56	0.68
MIX-VAE - clean	1.70	1.92	2.29	2.48	2.66	-3.51	1.67	5.38	9.22	12.07	0.24	0.35	0.47	0.55	0.65
SwVAE - clean	1.67	1.97	2.39	2.62	2.83	-3.59	2.00	6.24	10.73	14.12	0.25	0.36	0.51	0.61	0.72
MIX-VAE - noisy	1.66	1.91	2.22	2.41	2.51	-3.78	1.50	5.18	8.72	10.88	0.23	0.34	0.45	0.53	0.63
SwVAE - noisy	1.65	1.94	2.36	2.60	2.81	-3.97	1.84	6.14	10.51	14.06	0.24	0.35	0.50	0.59	0.67

The proposed switching generative model provides a dynamic mechanism to make the performance robust with respect to noisy audio and visual data.

- The VEM framework is slow. Trying to re-use the trained encoders at inference time can reduce the complexity.
- Temporal modeling of the latent variables to benefit from time dependency between audio as well as visual frames.

References

- D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," ICLR, 2014.
- Y. Bando et al., "Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization," in Proc. ICASSP, 2018, pp. 716–720
- S. Leglaive et al., "A variance modeling framework based on variational autoencoders for speech enhancement," in Proc. MLSP, 2018.
- M. Sadeghi et al., "Audio-visual Speech Enhancement Using Conditional Variational Auto-Encoder," IEEE Transactions on Audio, Speech and Language Processing, vol. 28, pp. 1788- 1800, May 2020.
- M. Sadeghi and X. Alameda-Pineda, "Robust Unsupervised Audio-visual Speech Enhancement Using a Mixture of Variational Autoencoders," in Proc. ICASSP, Barcelona, Spain, May 2020.
- C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag Berlin, Heidelberg, 2006.
- A. H. Abdelaziz, "NTCD-TIMIT: A new database and baseline for noise-robust audio-visual speech recognition," in Proc. INTERSPEECH, 2017.

Thank you for your attention