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Gradient backpropagation through a long

short-term memory (LSTM) cell
Mostafa Sadeghi

Abstract

In this brief document, I am going to derive the equations for gradient backpropagation through an

LSTM cell. Although with the presence of many deep learning softwares there is no longer any need to

compute gradients by hand, this would be a nice exercise on the backpropagation method. Note that this

document is by no means a tutorial on LSTM; instead, it is only a guide on how to do backpropagation

in LSTMs. So, it assumes the reader has a prior knowledge on RNN and LSTM.
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I. INTRODUCTION

Long short-term memory (LSTM) networks have been proven to be much more effective than vanilla

recurrent neural network (RNN) networks in training over long sequences. This is due to the fact that

in contrast to RNNs, in LSTMs, there is a direct flow of the so-called state variables all across the time

axis that prevents gradient vanishing or explosion. However, gradient computations for an LSTM cell are

more involved than vanilla RNNs.

A. LSTM: forward pass

The overall structure of an LSTM cell is shown in Fig. 1. “1Similar to the vanilla RNN, at each timestep

we receive an input xt ∈ RD and the previous hidden state ht−1 ∈ RH ; the LSTM also maintains an

H-dimensional cell state, so we also receive the previous cell state ct−1 ∈ RH . The learnable parameters
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Fig. 1: An LSTM cell. Square blocks denote matrix-vector multiplication, yellow and brown blocks denote

elementwise operations, and the green blocks denote summation. Note that the matrices M1, . . . ,M4 are

fixed and so, they are not trained. The bias vector has not been shown in this figure, because its gradient

computation is very easy. For the definition of each variable, see the text.

of the LSTM are an input-to-hidden matrix Wx ∈ R4H×D, a hidden-to-hidden matrix Wh ∈ R4H×H

and a bias vector b ∈ R4H .

At each timestep we first compute an activation vector a ∈ R4H as a = Wxxt +Whht−1 + b. We

then divide this into four vectors ai,af ,ao,ag ∈ RH where ai consists of the first H elements of a, af

is the next H elements of a, etc. We then compute the input gate i ∈ RH , forget gate f ∈ RH , output

gate o ∈ RH and block input g ∈ RH as

i = σ(ai) f = σ(af ) o = σ(ao) g = tanh(ag)

where σ is the sigmoid function and tanh is the hyperbolic tangent, both applied elementwise.

Finally we compute the next cell state ct and next hidden state ht as

ct = f � ct−1 + i� g ht = o� tanh(ct)

where � is the elementwise product of vectors.”
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B. LSTM: backward pass

To make the computations easier, we define the following matrices: M1, . . . ,M4, where Mi is the

i-th H × 4H submatrix of the 4H × 4H identity matrix. For instance,

M1 =


1 0 0 . . . 0 0 0 . . . 0

0 1 0 . . . 0 0 0 . . . 0
...

...
...

. . .
... 0 0 . . . 0

0 0 0 . . . 1 0 0 . . . 0


H×4H

It is then straightforward to verify the following

ai = M1 · a af = M2 · a ao = M3 · a ag = M4 · a

Note that introducing these matrices is mainly for simplicity of the derivations, and it’s not an efficient

way for practical implementations. To derive the gradient expressions, we use graph computations by

breaking the overall computations in an LSTM cell into simple operations. To this end, let’s define the

following additional intermediate variables:

ig = i� g c′t = tanh(ct) fc = f � ct−1

With these definitions, the cell outputs can be written as

ct = fc + ig ht = o� c′t

Now, we are ready for gradient computations! Let’s go ahead! Given the output gradients denoted dht

and dct coming from the next LSTM cell, we want to compute the gradients of all the variables. In other

words, we want to backpropagate the output gradients from the cell outputs all the way to the cell inputs.

To do this, we can write (see also Fig. 2)

• do = dht � c′t (Because ht = o� c′t)

• dc′t = dht � o (Because ht = o� c′t)

• dig = dct + ˙tanh(ct)� dc′t (Gradient comes from two sources to the top summation node; see Fig. 2)

• dfc = dct + ˙tanh(ct)� dc′t = dct + (1− tanh2(ct))� dc′t = dct + (1− c′t
2)� dc′t

• di = dig � g (Because ig = i� g)

• dg = dig � i

• df = dfc � ct−1 (Because fc = f � ct−1)

• dai = σ̇(ai)�di = σ(ai)�(1−σ(ai))�di = i�(1−i)�di (Because i = σ(ai) and σ̇ = σ(1−σ))

• daf = σ̇(af )� df = f � (1− f)� df
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Fig. 2: The same as Fig. 1 but with illustration of gradient flows directions as well as indicating some

intermediate variables.

• dao = σ̇(ao)� do = o� (1− o)� do

• dag = ˙tanh(ag)� dg = (1− g2)� dg

• da = MT
1 · dai +MT

2 · daf +MT
3 · dao +MT

4 · dag (Because the gradient backpropagates through four

paths to reach a; see Fig. 2)

• dxt = WT
x · da

• dht−1 = WT
h · da

• dWx = da · xT
t

• dWh = da · hT
t−1

• db = da (Bias gradient)

In the above, the power of 2 is applied elementwise. Note that the effect of M1, . . . ,M4 is to

put dai, . . . , dag in their corresponding positions in a 4H-long vector to create da. That is, they just

concatenate dai, . . . , dag on top of each other.


