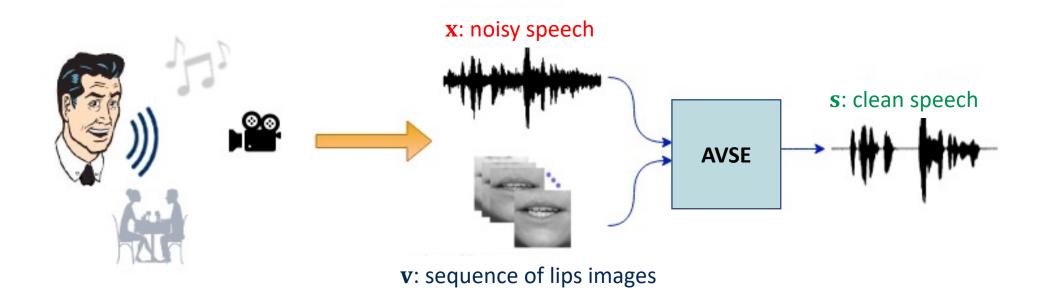


Robust and Efficient Deep Learning based Audio-visual Speech Enhancement


Mostafa Sadeghi

Multispeech Team Inria Nancy – Grand Est

ANR JCJC REAVISE - Problem definition

Audoi-visual Speech Enhancement (AVSE)

>>> AVSE: Incorporate visual modality (lips movements) to improve speech quality in noisy environments.

- Human-machine interaction (virtual assistant, social robots)
- Human-human interaction (listening comfort, hearing aids)

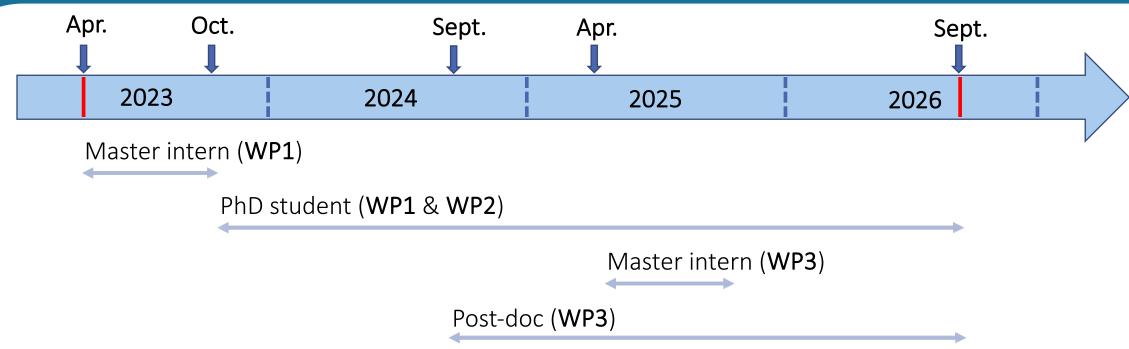
ANR JCJC REAVISE - Objectives

Two main AVSE categories:

Supervised (discriminative)	Unsupervised (generative)
Model $p(\mathbf{s} \mathbf{x},\mathbf{v})$ with a deep neural network.	Model $p(\mathbf{s} \mathbf{v})$, then combine it with $p(\mathbf{x} \mathbf{s},\mathbf{v})$
Model trained on noise $(x = s + n, v, s)$	Model trained on only clean data (s, v)
➤ Generalization issue	✓ Potentially better generalization
X Complex and big models	☑ Lightweight models
V Fast inference	X Costly, iterative inference

REAVISE aims to bridge the gap between the supervised and unsupervised AVSE approaches, benefiting from the best of both worlds

ANR JCJC REAVISE - Objectives


REAVISE objectives

- 1. Robust, efficient neural architectures for audio-visual fusion (WP1)
- 2. Data-efficient, generalizable models and frameworks for AVSE (WP2)
- 3. Fast and efficient inference algorithms with convergence guarantees (WP3)

REAVISE will achieve these objectives by leveraging recent methodological and theoretical breakthroughs in *deep neural networks*, *computer vision*, *statistical signal processing*, and *optimization*.

ANR JCJC REAVISE – Project organization

Collaborators

- Romain Serizel (University of Lorraine) Audio signal processing
- Xavi Alameda-Pineda (Inria Grenoble) Computer vision & multimodal ML
- Timo Gerkmann (University of Hamburg) Speech signal processing
- Franck lutzeler (University of Grenoble) Numerical optimization

Thank you

