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Speech Enhancement
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Short-time Fourier transform (STFT) representation:

noisy speech clean speech noise

o x={x}i_,

o x; = [xy]f_, € CF (similarly for s and n).

[Given noisy speech observation x = s + n, estimate the clean speech signal, s.]
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Audio-visual Speech Enhancement (AVSE)

Visual modality (lip movements):

o Correlates well with speech signal (lip reading),

e Very helpful at highly noisy environments (unaffected by acoustic noise).
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Given noisy speech observation x = s+ n & visual data v, estimate the clean
speech signal, s.




Supervised (discriminative) AVSE

Model pg(s|x, V), and learn ©:
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State-of-the-art performance, but ...

e Needs a huge audiovisual parallel (noise signal, clean speech) corpus
e Very deep and complex networks

e Lack of a systematic robust framework for noisy visual data



Unsupervised (generative) AVSE

Speech enhancement without training on noise.

Model pe(s|x, v) o« py(x]s, v) - po(s|v), and learn © = 6 U ¢):
—_——— —\—
Inference Training
e Training - Learn speech’s prior distribution py(s|v)

e Inference - Model py(x[s, V), and infer s using py(s|v)

> Advantages over supervised approaches:

e No need to huge parallel corpora — compact & lightweight models
e Potentially better generalization performance

e Flexibility to design robust frameworks

However, this approach is very recent, and significantly less explored.



Speech generative modeling

How to learn speech’s prior distribution?

e Latent variable generative models: Variational autoencoder (VAE),?
Normalizing Flow (NF),? etc.

e Score-based generative models:3 Learn the score Vg log py(s|v)

We focus on VAE:
po(sv) = / pa (82, v)pa(2|v)dz

e z = {z:}: (real-valued, low-dimensional) latent variables

1D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” ICLR, 2014.
2D. Rezende, D. Mohamed, “Variational inference with normalizing flows,” ICML, 2015.

3Y. Song, S. Ermon, “Generative modeling by estimating gradients of the data distribution,” NeurlPS, 2019



VAE-based speech modeling

A Gaussian generative model:*®

po(st|ze, vi) = N (O, diag(o g (24, Vt))),
po(u|vi) = N (h(v1), diag(ah(v2)

> og”(.,.), uy(.), oh(.) are neural networks parameterized by 0

Given a training set {(s;,v;)}}t, —> learn the generative model parameters,
i.e. 8, using the maximum likelihood principle.

4l\/I. Sadeghi et al., “Audio-Visual Speech Enhancement Using Conditional Variational Auto-Encoders,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 1788 —1800, June 2020.

55. Leglaive et al. “A variance modeling framework based on variational autoencoders for speech enhancement,” MLSP, 2018.



VAE-based parameter learning

Need to maximize log py(s|v), which is intractable. However:

log po(s|v) = log / po (8|2, v)po(zlv)da

Z Ez/“\‘z s,V) |:10g M} = L(93¢)

qe(2zls, V)

e N
Using variational inference, maximize the lower bound of log py(s|v):

L(6,6) = By, i) | 10820 (512, V) |+ (1 = 0)-Epy i) | log o (s2,v) | -

Dia (as(zls,v) || o(zlv))
- qp(z|s,v) = py(z]s, v): “encoder” with parameters ¢.

- Dxi(- || -) is the Kullback-Leibler divergence.

- 0 < a <1 gives some reconstruction power to the prior network.
- J




VAE architectures
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Speech Enhancement

Observation model: Vi: o =8 +mny

Noise model: Non-negative Matrix Factorization (NMF)

Ve ng ~ N (0,diag(WH[.,#])), W, H>0

Clean speech model: Trained generative (decoder) network.
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Speech Enhancement

Inference:
> Parameters to be estimated: ¢ = {W, H}

> Observed variables: {(x;,v¢)}_;

) T
> Latent variables: z = {Zt}t:1
Parameter estimation:

Y* = argmax log py(x|v) = argmax/logp¢(w, z|v)dz
(] (4
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Parameter Estimation

Monte Carlo Expectation Maximization (MCEM)

From an initialization ¥(9) of the parameters, iterate:

L E_Step: WW)(k ) /) k) (z|x,v) [lngl/)(X Z V)]
Intractable expectation — Markov chain Monte Carlo method.
Q™) ~ Z log py (%, 2", v)

{z""}il ~ p(z|x, v; 67) using the Metropolis-Hastings method.

e M-Step: P+l argmax,, Qv ™).
Standard multiplicative update rules.
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Speech Estimation

Once the parameters are estimated, the speech STFT frames are
estimated via a Wiener-like filtering (Vf,t):

S5t = Ep . (spilosive) [51t]
o5 (20, vi)
por (el | i (g, ve) + (WWHT) 1

'l’ft.

where 1* denotes the set of estimated parameters by the MCEM method.

> The intractable expectation is approximated by a Monte Carlo average.
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> NTCD-TIMIT dataset®

e Audio-visual recordings in controlled conditions
e Clean audio as well as noisy versions

e Frontal video frames with 30 FPS- 67 x 67 lips images

> Training set (~ 5 hours): 39 speakers x 98 sentences x 5 seconds
> Test set (~ 1 hour): 9 speakers x 98 sentences x 5 seconds

> Noise levels: —15 dB, —10 dB, —5 dB, 0 dB, 5 dB and 15 dB
> Noise types: Living Room (LR), White, Cafe, Car, Babble, and Street

> Baseline: Supervised’

6A:H. Abdelaziz, “NTCD-TIMIT: A new database and baseline for noise-robust audio-visual speech recognition,”

INTERSPEECH, 2017.

7A. Gabbay et al., “Visual speech enhancement,” INTERSPEECH, 2018.
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Networks architectures:

O A-VAE:

e Decoder: Single hidden layer, 128 nodes, hyperbolic tangent
activations. Input dimension: 32 (latent space).

e Encoder: Single hidden layer, 128 nodes, hyperbolic tangent
activations. Input dimension: 513 (spectrogram time frame).

© V-VAE:

e Decoder: Same as A-VAE.
e Encoder: ResNet-18 pre-trained model.

© AV-VAE: Shares the same architecture as that of AV-VAE with visual
embeddings being concatenated with the encoder’s and decoder’s input.
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Objective measures (the higher, the better)

e Signal-to-distortion ratio (SDR).
e Perceptual evaluation of speech quality (PESQ).
e Short-time objective intelligibility (STOI).

Improvement with respect to the input:
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Audio Examples: https://team.inria.fr/perception/research/av-vae-se/
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https://team.inria.fr/perception/research/av-vae-se/

Conclusions

Unsupervised approaches have great potential and advantages for
robust, generalizable, and interpretable AVSE. However, they

come with some challenges, e.g., complex (iterative) inference.

Bridging the gap between the unsupervised and supervised
approaches to benefit from the best of both worlds is an

interesting future direction.
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[ Thank you for your attention! ]




